Physics, asked by Anonymous, 7 hours ago

The work done on a particle of mass "m" by a force k [ xî / ( x² + y² )³/² + yî/ ( x² + y² ) ³/² ] (where k is a constant of approximate dimensions ) when the particle is taken from the point ( a , 0 ) along a circular path of radius about the origin in the x - y plane

Answers

Answered by Anonymous
24

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

{\maltese \; \; {\underline{\underline{\textsf{\textbf{Given that :}}}}}}

  • The force acting upon a particle of mass " m " is

{\red{\bigstar \; {\underline{\boxed{\rm{ K \bigg[ \dfrac{x \hat{i} }{(x^2 + y^2)^{3/2}} + \dfrac{y \hat{j}}{(x^2 + y^2)^{3/2}} \bigg] }}}}}}    

  • The particle is taken from the point ( a , 0 ) along a circular path of radius about the origin in the x - y plane

{\maltese \; \; {\underline{\underline{\textsf{\textbf{To Find :}}}}}}

  • The work done on the particle by the force given

{\maltese \; \; {\underline{\underline{\textsf{\textbf{Understanding Concept :}}}}}}

➤ Now we observe that the force given over here is considered as a variable force which isn't a fixed amount , so let's adapt the method of integration to find out the amount of work done on the particle

{\maltese \; \; {\underline{\underline{\textsf{\textbf{Formula Used :}}}}}}

The work done by a variable force is given by :

 { \bigstar { \underline{ \boxed{\bf \: Work \; done = {\displaystyle{\int \limits^{r_2}_{r_1}}\vec{\bf F} . \vec{\bf dr}}}}}}      

★ Now we know that the particle moves in the circular path along the co - ordinates { a , 0 } that means that the particle starts from the distance a at x - axis and ends at the point { 0 , a } at the y - axis so, let us assume that  a , a  are the limits

{\maltese \; \; {\underline{\underline{\textsf{\textbf{Required Solution :}}}}}}  

➛ Here we have the force but we don't have the components of the unit displacement \vec{\sf dr} so , let us assume the components of

Now the work done will be :

 \: {\red{\bullet \; {\bf {Work \; done = {\displaystyle{\int \limits^{r_2}_{r_1}}}}}}  \red{\vec{\bf F} . \vec{\bf dr}}}  

Integrating it we get the result :

{\longrightarrow} \red { \displaystyle{\rm{ \int \limits^ {a}_{a} K \bigg[ \dfrac{x \hat{i} }{(x^2 + y^2)^{3/2}} + \dfrac{y \hat{j}}{(x^2 + y^2)^{3/2}} \bigg] . \bigg( dx \hat{i} + dy\hat{j} \bigg)}}}

{\longrightarrow} {\displaystyle{\rm{ \int \limits^ {a}_{a}  \bigg[ \dfrac{x \hat{i} }{(x^2 + y^2)^{3/2}} + \dfrac{y \hat{j}}{(x^2 + y^2)^{3/2}} \bigg] . \bigg( dx \hat{i} + dy\hat{j} \bigg)}}}  

 \:{\longrightarrow} {  \displaystyle{ \rm{k \int \limits^ {a}_{a} \bigg[ \dfrac{ 1 }{(x^2 + y^2)^{3/2}}} \bigg] . \bigg( dx \hat{i} + dy\hat{j} \bigg)  }}     

let's integrate the second term using  formula :

\bullet \; {\underline{\boxed{ {\bf {  \int \limits^ {}_{}} x^n dx = \dfrac{x^{n+1}}{n+1}  }}}}  

{ \longrightarrow}{   \displaystyle{ \rm{  K\int \limits^ {a}_{a} \bigg[ \dfrac{ 1 }{(x^2 + y^2)^{3/2}}} \bigg] \int \limits^ {a}_{a}\bigg( dx \hat{i} + dy\hat{j} \bigg)  }}  

{\longrightarrow } { \displaystyle {\rm{ K \int \limits^ {a}_{a}  \bigg[ \dfrac{ 1 }{(x^2 + y^2)^{3/2}}} \bigg] \bigg\{ \bigg( \int \limits^ {a}_{a} dx \bigg) + \bigg(\int \limits^ {a}_{a}  dy\bigg)\bigg\}}}

{\longrightarrow} { \displaystyle {\rm{K \int \limits^ {a}_{a}  \bigg[ \dfrac{ 1 }{(x^2 + y^2)^{3/2}}} \bigg] \bigg\{d \bigg( \int \limits^ {a}_{a} x \bigg) +d \bigg(\int \limits^ {a}_{a}  y\bigg)\bigg\}}}

{\longrightarrow}  {\displaystyle{\rm{ k \int \limits^ {a}_{a}  \bigg[ \dfrac{ 1 }{(x^2 + y^2)^{3/2}}} \bigg] \bigg\{d \bigg( \frac{x^2}{2} \bigg) +d \bigg( \dfrac{y^2}{2} \bigg)\bigg\}}}  

Simplifying the rest we get ;

{\longrightarrow } {\rm{ \bigg[ \dfrac{K }{(x^2 + y^2)^{3/2}}} \bigg]^a_a \; \bigg[\dfrac{x^2}{2} \bigg] ^{a}_{a}+ \bigg[ \dfrac{y^2}{2} \bigg] ^{a}_{a}}  

\longrightarrow {\rm {\bigg[ \dfrac{K }{(a^4)^{3/2}}} \bigg] \bigg[\dfrac{a^2 - a^2}{2} \bigg] + \bigg[ \dfrac{a^2- a^2}{2} \bigg]}

\longrightarrow {\rm {\bigg[ \dfrac{K }{(a)^{3/2}}} \bigg] \bigg[\dfrac{0}{2} \bigg] + \bigg[ \dfrac{0}{2} \bigg]}

\longrightarrow {\rm {\bigg[ \dfrac{K }{(a^2 + y^2)^{3/2}}} \bigg] \times 0 + 0}  

\longrightarrow { \rm { \bigg[ \dfrac{K }{(a)^{3/2}}} \bigg] \times 0}  

\longrightarrow {\red{\rm{\underline{\underline{ Work \; done _{(by \; the \; variable \; force) } = 0 }}}}}

{\maltese \; \; {\underline{\underline{\textsf{\textbf{Therefore :}}}}}}

  • The work done on the particle by the force is 0

{\maltese \; \; {\underline{\underline{\textsf{\textbf{More to know :}}}}}}

Integration formulae of Trigonometric Functions :

\longrightarrow  {\displaystyle {\rm{ \int Sin(x)   \; dx = - cos ( x) + c}}}

\longrightarrow {\displaystyle {\rm{ \int Cos(x)   \; dx = Sin ( x) + c}}}

\longrightarrow {\displaystyle{\rm{ \int Sec^2(x)   \; dx = tan ( x) + c}}}

\longrightarrow  {\displaystyle{\rm{ \int Sec(x)  \;tan(x) \; dx = Sec ( x) + c}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

* Note : View it from the web if any error from the app

Similar questions