Chemistry, asked by Ajaysinhchauhan, 4 days ago

The work function for caesium atom s 1.9 eV. Calculate the threshold frequency of the radiation. If the caesium element is irradiated with a wavelength 500 nm, calculate the kinetic energy and the velocity of the ejected photoelectron. (1 eV = 1.602 * 10 ^ - 19 )​

Answers

Answered by aryanumdekar6
1

Answer:

Velocity is 4000m/s

KE is 50J

Explanation:

Use E=hc/lamda to calculate Energy incident

KE+W=E incident

Answered by aparnaappu8547
1

Answer:

Threshold frequency of the radiation is 4.59*10^{14} Hz

Kinetic energy and velocity of the ejected photoelectron is 9.32*10^{-20} J and 4.53*10^{5} m/s.

Explanation:

Work function hv_{0} = 1.9 eV

                             = 1.9*1.602*10^{-19} J

                             = 3.044*10^{-19} J

where h = planks constant = 6.626*10^{-34} Js

          v_{o} = threshold frequency

3.044*10^{-19} = 6.626*10^{-34}*v_{o}

v_{o} = \frac{3.044*10^{-19}}{6.626*10^{-34}}

   = 4.59*10^{14} Hz

Kinetic energy of the ejected electron = hv-hv_{0}

Given wavelenght ∧ = 500 nm = 500*10^{-9} m

v = c/∧

  = \frac{3*10^{8} }{500*10^{-9} }

  = 6*10^{14} Hz

kinetic energy = (6.626*10^{-34}*6*10^{14})-(3.044*10^{-19})

                        = 9.32*10^{-20} J

kinetic energy = \frac{1}{2} m u^{2}

u = velocity of ejected photoelectron

9.32*10^{-20} = \frac{1}{2} * 9.1*10^{-31}*u^{2}

u^{2} = 2.05*10^{11} m/s

u = 4.53*10^{5} m/s

Similar questions