Chemistry, asked by pbsm1883, 11 months ago

The work function of a photoelectric material is 4.0 eV. (a) What is the threshold wavelength? (b) Find the wavelength of light for which the stopping potential is 2.5 V.

Answers

Answered by bhuvna789456
1

(a) The threshold wavelength is 310 \mathrm{nm}

(b) The wavelength of light for which the stopping potential is 2.5 V is 191 nm .

Explanation:

A photoelectric material works function ϕ = 4 eV = 4 \times 1.6 \times 10^{-19} \mathrm{J}

Potential ends, V_0 = 2.5 V

Planck's constant, h = 6.63 × 10−34 Js  

(a) To find the threshold wavelength:

A photoelectric material Work function ,

\phi=\frac{h c}{\lambda_{0}}  

Here, λ0 = Light wavelength threshold

            c = velocity of light

\lambda_{0}=\frac{h c}{\phi}

    =\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{\left(4 \times 1.6 \times 10^{-19}\right)}

\lambda_{0}=\frac{6.63 \times 3}{64} \times \frac{10^{-27}}{10^{-9}}

\lambda_{0}=3.1 \times 10^{-7} \mathrm{m}

\lambda_{0}=310 \mathrm{nm}

(b) To find the wavelength of light for which the stopping potential is 2.5 V:

From the Photoelectric Equation of Einstein,

E=\phi+e V_{0}

When the respective values are replaced, we get:

\frac{h c}{\lambda}=4 \times 1.6 \times 10^{-19}+1.6 \times 10^{-19} \times 2.5

\lambda=\frac{\left(6.63 \times 10^{-34} \times 3 \times 10^{8}\right)}{\left(6.5 \times 1.6 \times 10^{-19}\right)}

\lambda=\frac{6.63 \times 3 \times 10^{-26}}{1.6 \times 10^{-19} \times 6.5}

\lambda=\frac{6.63 \times 3 \times 10^{-26}}{1.6 \times 10^{-19} \times 6.5}

\lambda=1.9125 \times 10^{-7}

  = 191 nm

Similar questions