Physics, asked by Nikiselly, 10 months ago

the workdone in moving a charge 2 ×10 to the power -9c from a point of potential -3kv to another point P is 5 × 10 to the power -5j. Find the positive at point P

Answers

Answered by Sharad001
27

Question :-

The workdone in moving a charge 2 × 10 ^( -9) C from a point of potential -3k volt to another point P is 5 × 10 ^( -5) j. Find the potential at point P.

Answer :-

\to  \boxed{\sf  \red{V_P = 22 \times } {10}^{3}  \: volt \: }  \\  \sf \: or \:  \\  \to  \green{ \boxed{\sf V_P =  \pink{22 \: k \: volt \:} } \: }

To Find :-

→ Potential at point P .

Explanation :-

\bf{Given}\begin{cases}\sf{ \green{charge \: (q) =2 \times {10}^{ - 9} }\: c  }\\ \sf{\purple{work\:done (w) = 5 \times {10}^{ - 5} j}}\\  \sf{ potential \:at\: point \:A \:(V_{A})}\\ \sf{V_{A } = \blue{ -3\:\times 10^{3}\: volt }}\end{cases}

We know that :-

\to \boxed{ \sf{ \green{Potential  \: difference }=  \frac{ \pink{ Work \:  done}}{charge}}}

Let potential at point P is  \sf V_P

•°•

 \to \sf \green{ V_P -} V_A =  \frac{\red{5 \times  {10}^{ - 5}} }{2 \times  {10}^{ - 9} }  \\  \\  \to \sf \pink{V_P + 3}  \times  {10}^{3}  = \blue{2.5 \times  {10}^{4} } \\  \\  \to \sf \: V_P = 25 \times  {10}^{3}  - \green{3 \times  {1}^{3} } \\  \\  \to  \boxed{\sf V_P = \orange{22 \times  {10}^{3}  \: }volt \: }  \\  \sf \: or \:  \\    \to  \boxed{\sf V_P = \red{ 22 \: k \:} volt \: }

Similar questions