the
Write
maximum and
minimum value of the function
x x3 - 2x² - 9
Answers
Answer:
f(x) = y = 4x - x2 + 3
First let us find the first derivative
f'(x) = 4(1) - 2x + 0
f'(x) = 4 - 2x
Let f'(x) = 0
4 - 2x = 0
2 (2 - x) = 0
2 - x = 0
x = 2
Now let us find the second derivative
f''(x) = 0 - 2(1)
f''(x) = -2 < 0 Maximum
To find the maximum value, we have to apply x = 2 in the original function.
f(2) = 4(2) - 22 + 3
f(2) = 8 - 4 + 3
f(2) = 11 - 4
f(2) = 7
Therefore the maximum value is 7 at x = 2. Now let us check this in the graph.
Checking :
y = 4x - x2 + 3
The given function is the equation of parabola.
y = -x² + 4 x + 3
y = -(x² - 4 x - 3)
y = -{ x² - 2 (x) (2) + 2² - 2² - 3 }
y = - { (x - 2)² - 4 - 3 }
y = - { (x - 2)² - 7 }
y = - (x - 2)² + 7
y - 7 = -(x - 2)²
(y - k) = -4a (x - h)²
Here (h, k) is (2, 7) and the parabola is open downward.