Physics, asked by nomaan86, 2 months ago

The x or y coordinate of the centroid
of a quadrant of a circular area of
radius r is

Answers

Answered by amitnrw
3

Given :  a quadrant of a circular area of radius r

To Find  : x or y coordinate of the centroid

Solution:

Assuming radius = r  and  center at origin   and 1st Quadrant

x² + y² = r²

=> y = √r² - x²

A = (1/4)πr²

(1/4)πr² x cord  =   \int\limits^r_0 {x\sqrt{r^2-x^2} } \, dx

\int\limits^r_0 {x\sqrt{r^2-x^2} } \, dx =  \frac{-1}{2} \int\limits^r_0 {(-2x)\sqrt{r^2-x^2} } \, dx

r² - x²  = t   =>  -2xdx = dt

x = 0  => t = r²    and  x= r  => t = 0

=\frac{-1}{2} \int\limits^0_{r^2} {  \sqrt{t} } \, dt

=\frac{-1}{2} \frac{2}{3} [t^\frac{3}{2} ]_{r^2}^0

= r³/3

(1/4)πr² x cord =  r³/3

=> x cord  =  4r/3π

Similarly y cord =  4r/3π

Learn More:

find the centroid of the triangle xyz whose vertices are x 3, -5, y -3, 4 ...

brainly.in/question/14122475

centroid of triangle the equations of whose sides are 12x2-20xy+7y2 ...

brainly.in/question/12651962

Attachments:
Answered by Matrix7777
0

Answer:

x or y coordinate of the centroid

Solution:

Assuming radius = r and center at origin and 1st Quadrant

x² + y² = r²

=> y = √r² - x²

A = (1/4)πr²

(1/4)πr² x cord = \int\limits^r_0 {x\sqrt{r^2-x^2} } \, dx

0

r

x

r

2

−x

2

dx

\int\limits^r_0 {x\sqrt{r^2-x^2} } \, dx = \frac{-1}{2} \int\limits^r_0 {(-2x)\sqrt{r^2-x^2} } \, dx

0

r

x

r

2

−x

2

dx=

2

−1

0

r

(−2x)

r

2

−x

2

dx

r² - x² = t => -2xdx = dt

x = 0 => t = r² and x= r => t = 0

=\frac{-1}{2} \int\limits^0_{r^2} { \sqrt{t} } \, dt=

2

−1

r

2

0

t

dt

=\frac{-1}{2} \frac{2}{3} [t^\frac{3}{2} ]_{r^2}^0=

2

−1

3

2

[t

2

3

]

r

2

0

= r³/3

(1/4)πr² x cord = r³/3

=> x cord = 4r/3π

Similarly y cord = 4r/3π

Similar questions