The y-coordinate of a point A is thrice its x-
coordinate. If A is equidistant from B(2, - 4)
and C(8, 2), find the coordinates of A.
Coordinates of A =
Answers
Answered by
8
Answer:-
Let the x - Coordinate of the point A be "a".
It's y - Coordinate = 3a.
Given:
A is equidistant from the points B(2 , - 4) and C(8 , 2).
That is,
→ BA = CA
We know that,
(Squaring on both sides)
→ (2 - a)² + ( - 4 - 3a)² = (8 - a)² + (2 - 3a)²
Using (a - b)² = a² + b² - 2ab
→ (2)² + a² - 2(2)(a) + ( - 4)² + (3a)² - 2( - 4)
(3a) = (8)² + a² - 2(8)(a) + (2)² + (3a)² - 2(2)
(3a)
→ 4 + a² - 4a + 16 + 9a² + 24a = 64 + a² -
16a + 4 + 9a² - 12a
→ 10a² + 20a + 20 = 10a² - 28a + 68
→ 10a² - 10a² + 20a + 28 = 68 - 20
→ 48a = 48
→ a = 48/48
→ a = 1
→ x - Coordinate of A (a) = 1
→ y - Coordinate of A (3a) = 3(1) = 3
Hence the Coordinates of A are (1 , 3).
Similar questions