Physics, asked by Deepakrocky4768, 10 months ago

The Young’s modulus of brass and steel are
respectively 10¹⁰ N/m² and 2 × 10¹⁰ N/m². A
brass wire and a steel wire of the same length are
extended by 1 mm under the same force, the radii
of brass and steel wires are RB and RS
respectively. Then
(a) Rs = ⎷2 Rв (b) Rs = Rв / ⎷2
(c) Rs = 4Rв (d) Rs = Rв / 4

Answers

Answered by shadowsabers03
2

\Large\boxed{\sf{(b)\ R_s=\dfrac{R_b}{\sqrt2}}}

We have,

\longrightarrow\sf{Y=\dfrac{F\ L}{A\ \Delta L}}

In case of same length, extension and force,

\longrightarrow\sf{Y\propto\dfrac{1}{A}\quad\quad\dots(1)}

But,

\longrightarrow\sf{A=\pi r^2}

\Longrightarrow\sf{A\propto r^2}

Then (1) becomes,

\longrightarrow\sf{Y\propto\dfrac{1}{r^2}}

\longrightarrow\sf{r\propto\dfrac{1}{\sqrt Y}}

Therefore,

\longrightarrow\sf{\dfrac{R_s}{R_b}=\sqrt{\dfrac{Y_b}{Y_s}}}

\longrightarrow\sf{\dfrac{R_s}{R_b}=\sqrt{\dfrac{10^{10}}{2\times10^{10}}}}

\longrightarrow\sf{\dfrac{R_s}{R_b}=\dfrac{1}{\sqrt2}}

\longrightarrow\sf{\underline{\underline{R_s=\dfrac{R_b}{\sqrt2}}}}

Similar questions