The zero of the polynomial x^2 - x - 110 are (a) 11 , -10 (b) -11 , 10 (c) -11 , -10 (d) 11 ,10
Answers
Answered by
0
Step-by-step explanation:
Given equation x
2
−10cx−11d=0 with a,b and x
2
−10ax−11b=0 with c,d
a+b=10c and c+d=10a
⇒(a−c)+(b−d)=10(c−a)
⇒(b−d)=11(c−a) ...(i)
Since, c is the root of x
2
−10ax−11b=0
⇒c
2
−10ac−11b=0 ...(ii)
Similarly, a is the root of x
2
−10cx−11d=0
⇒a
2
−10ca−11d=0 ...(iii)
On subtracting equation (iii) from (ii), we get
(c
2
−a
2
)=11(b−d) ...(iv)
∴(c+a)(c−a)=11×11(c−a) [from (i)]
⇒c+a=121
∴a+b+c+d=10c+10a
=10(c+a)=1210
Similar questions