Math, asked by kirat6350, 8 months ago

The zeroes of polynomial p(x)=x²-2x-3 are

Answers

Answered by Abhishek474241
7

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

  • A polynomial
  • X²-2x-3

{\sf{\green{\underline{\large{To\:Verify}}}}}

  • . zeroes of polynomial

{\sf{\pink{\underline{\Large{Explanation}}}}}

x²-2x-3

  • Spilt the middle term in such a way that sum become -2 and product 3

=>x²-2x-3

=>x²-3x+x-3

=>x(x-3)+1(x-3)

=>(x-3) (x+1)

Additional Information

Let the zeroes of the polynomial be\tt\alpha{and}\beta

Then,

\tt\alpha{+}\beta{=}\frac{-b}{a}

&

\tt\alpha{\times}\beta{=}\frac{c}{a}

Here,

a=1

b-2

C=-3

\tt\alpha{+}\beta{=}\dfrac{{2}}{1}=\dfrac{-b}{a}

\tt\alpha{+}\beta{=}\dfrac{Cofficient\:of\:X}{Cofficient\:of\:x^2}=

&

\tt\alpha{\times}\beta{=}\dfrac{-3}{1}

\tt{\large\alpha{\times}\beta{=}\dfrac{Constant\:term}{Cofficient\:of\:x^2}}

Hence,relation verified

Answered by sethrollins13
8

✯✯ QUESTION ✯✯

The zeroes of polynomial p(x)=x² - 2x - 3 are?

━━━━━━━━━━━━━━━━━━━━

✰✰ ANSWER ✰✰

\longmapsto\tt{{x}^{2}-2x-3}

\longmapsto\tt{{x}^{2}-(3x-1x)-3}

\longmapsto\tt{{x}^{2}-3x+1x-3}

\longmapsto\tt{x(x-3)+1(x-3)}

\longmapsto\tt{(x+1)(x-3)}

  • x = -1
  • x = 3

So , -1 and 3 are the zeroes of Polynomials x²-2x-3..

Here : -

  • a = 1
  • b = -2
  • c = -3

Sum of Zeroes : -

\longmapsto\tt{\alpha+\beta=\dfrac{-b}{a}}

\longmapsto\tt{-1+3=\dfrac{-(-2)}{1}}

\longmapsto\tt{2=2}

\pink\longmapsto\:\large\underline{\boxed{\bf\red{L.H.S}\green{=}\orange{R.H.S}}}

_______________________

Product of Zeroes : -

\longmapsto\tt{\alpha\beta=\dfrac{c}{a}}

\longmapsto\tt{-1\times{3}=\dfrac{-(-3)}{1}}

\longmapsto\tt{-3=-3}

\red\longmapsto\:\large\underline{\boxed{\bf\green{L.H.S}\orange{=}\purple{R.H.S}}}

HENCE VERIFIED

Similar questions