Math, asked by gayusarwar, 11 hours ago

The zeroes of the polynomial p(y) = 5√5y² + 30y + 8√5 are a) -3/√5 , -7/√11 b) -2/√5 , -4/√5 c) 3/√5 , 3/√11 d) 2/√5 , 4√5​

Answers

Answered by MaheswariS
3

\underline{\textbf{Given:}}

\mathsf{P(y)=5\sqrt{5}y^2+30y+8\sqrt{5}}

\underline{\textbf{To find:}}

\textsf{Zeroes of P(y)}

\underline{\textbf{Solution:}}

\textsf{We apply factorization method to find the zeroes of P(y)}

\mathsf{Consider,}

\mathsf{P(y)=5\sqrt{5}y^2+30y+8\sqrt{5}}

\textsf{This can be written as}

\mathsf{P(y)=5\sqrt{5}y^2+20y+10y+8\sqrt{5}}

\mathsf{P(y)=5y(\sqrt{5}y+4)+2\sqrt{5}(\sqrt{5}y+4)}

\mathsf{P(y)=(\sqrt{5}y+4)(5y+2\sqrt{5})}

\mathsf{Now,\;P(y)=0}

\implies\mathsf{(\sqrt{5}y+4)(5y+2\sqrt{5})=0}

\implies\mathsf{\sqrt{5}y+4=0\;\;(or)\;\;5y+2\sqrt{5}=0}

\implies\mathsf{\sqrt{5}y=-4\;\;(or)\;\;5y=-2\sqrt{5}}

\implies\mathsf{y=\dfrac{-4}{\sqrt5}\;\;(or)\;\;y=\dfrac{-2\sqrt{5}}{5}}

\implies\mathsf{y=\dfrac{-4}{\sqrt5}\;\;(or)\;\;y=\dfrac{-2}{\sqrt{5}}}

\therefore\mathsf{Zeroes\;are\;\dfrac{-2}{\sqrt{5}},\dfrac{-4}{\sqrt{5}}}

\underline{\textbf{Answer:}}

\mathsf{Option\;(b)\;is\;correct}

\underline{\textbf{Find more:}}

if α & β are the zeros of the quadratic polynomial p(x)= 3X²-6x+4,find the value of α\β+β+α+2(1/α+1/β)+3αβ​

https://brainly.in/question/18209208  

Similar questions