Math, asked by ranichaudhuri127, 8 months ago

+
The Zeroes of the quadratic Polynomial x2
55x + 125 are​

Answers

Answered by mithunjarali306
1

Answer:

just apply the quadratic formula

\begin{gathered}d = {b}^{2} - 4ac \\ and \: then \\ roots = \frac{ - b + - \sqrt{d} }{2a}\end{gathered}

d=b

2

−4ac

andthen

roots=

2a

−b+−

d

OR

The roots are x=-44+\sqrt{1811},-44-\sqrt{1811}x=−44+

1811

,−44−

1811

Step-by-step explanation:

Given : Polynomial - x^2+88x+125x

2

+88x+125

To find : The zero of the quadratic polynomial

Solution :

Equation x^2+88x+125=0x

2

+88x+125=0

Solving by discriminant method

General form - ax^2+bx+c=0ax

2

+bx+c=0

D=b^2-4acD=b

2

−4ac

Solution is x=\frac{-b\pm\sqrt{D}}{2a}x=

2a

−b±

D

Comparing with our equation,

where a=1 , b=88, c=125

D=b^2-4acD=b

2

−4ac

D=(88)^2-4(1)(125)D=(88)

2

−4(1)(125)

D=7744-500D=7744−500

D=7244D=7244

Solution is x=\frac{-b\pm\sqrt{D}}{2a}x=

2a

−b±

D

x=\frac{-(88)\pm\sqrt{7244}}{2(1)}x=

2(1)

−(88)±

7244

x=\frac{-88\pm2\sqrt{1811}}{2}x=

2

−88±2

1811

x=-44\pm\sqrt{1811}x=−44±

1811

SIMILAR QUESTION BY UNDERSTANDING THIS FORMULA TRY TO SOLVE THAT QUESTIONThe Zeroes of the quadratic Polynomial x2

55x + 125 are

Similar questions