Math, asked by sayanahyamal2005, 10 months ago

the zeros of 5x^2-4-8x​

Answers

Answered by FIREBIRD
9

Step-by-step explanation:

We Have :-

5x²-8x-4

To Find :-

Zeroes of the polynomial

Method Used :-

Middle Term Splitting

Solution :-

5x^{2}  - 8x - 4  = 0\\  \\  \\ 5x^{2}  - 10x  + 2x - 4 =0  \\  \\  \\ 5x(x - 2) + 2(x - 2)  = 0\\  \\  \\ (x - 2)(5x + 2) = 0 \\  \\  \\ so \: x \: can \: either \: be \:  \\  \\  \\ x - 2 = 0 \\  \\  \\ x = 2 \\  \\  \\ or \\  \\  \\ 5x + 2 = 0 \\  \\  \\ 5x =  - 2 \\  \\  \\ x =  \dfrac{ - 2}{5}

Answered by Anonymous
8

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\put(1,1.2){\line(1,0){6.5}}\end{picture}

❏ Question:-

Find the Zeroes of the polynomial ,

\sf{\ \ {5x^2-4-8x}}

❏ Solution:-

\implies \sf{\ \ {5x^2-4-8x=0}}

\implies \sf{\ \ {5x^2-8x-4=0}}

\implies \sf{\ \ {5x^2-(10-2)x-4=0}}

\implies \sf{\ \ {5x^2-10x+2x-4=0}}

\implies \sf{\ \ {5x(x-2)+2(x-2)=0}}

\implies \sf{\ \ {(x-2)(5x+2)=0}}

So Either ,

\longrightarrow (x-2)=0

\longrightarrow \boxed{x=2}

Or ,

\longrightarrow (5x+2)=0

\longrightarrow 5x=-2

\longrightarrow \boxed{x=\dfrac{-2}{5}}

∴ The Zeroes are \longrightarrow x=2 \:and\:\dfrac{-2}{5}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\put(1,1.2){\line(1,0){6.5}}\end{picture}

\setlength{\unitlength}{0.19 cm}}\begin{picture}(12,4)\thicklines\put(12,40){$\#\:STAY\:HOME$}\put(11,35){$\#\:STAY\: SAFETY$}\put(12,30){$\#\:SaveLives.us\:$}\put(20,20){\circle{10}}\put(19.5,21){\line(-1,0){1.5}}\put(20.5,21){\line(1,0){1.5}}\put(18.8,20.3){\circle*{0.7}}\put(21.1,20.3){\circle*{0.7}}\put(20,20.4){\line(0,-1){1.4}}\put(20.7,18.4){\line(-1,0){1.57}}\put(18.6,16.56){\line(0,-1){2}}\put(21.4,16.56){\line(0,-1){2}}\put(19,14.55){\line(-1,0){5}}\put(21,14.55){\line(1,0){5}}\put(14,14.55){\line(0,-1){16}}\put(26,14.55){\line(0,-1){16}}\put(14,14.55){\line(-4,3){5}}\put(26,14.55){\line(4,3){5}}\put(14,11){\line(-4,3){7.5}}\put(26,11){\line(4,3){7.5}}\put(9,18.3){\line(0,1){8.3}}\put(31,18.3){\line(0,1){8.3}}\put(33.5,16.6){\line(0,1){10}}\put(6.5,16.6){\line(0,1){10}}\put(3.5,26.5){\line(1,0){33}}\put(3.5,26.5){\line(0,1){20}}\put(3.5,46.5){\line(1,0){33}}\put(36.5,26.5){\line(0,1){20}}\put(14,-0.6){\line(1,0){12}}\put(14,-1.5){\line(1,0){12}}\put(14.4,-1.6){\line(0,-1){18.5}}\put(25.6,-1.6){\line(0,-1){18.5}}\put(20,-1.6){\line(0,-1){3}}\put(20,-4.6){\line(-1,-6){2.6}}\put(20,-4.6){\line(1,-6){2.6}}\put(14.4,-20){\line(-5,-6){3}}\put(25.6,-20){\line(5,-6){3}}\put(17.3,-20){\line(0,-1){3.7}}\put(17.3,-20){\line(-1,0){3}}\put(17.3,-23.6){\line(-1,0){6}}\put(22.6,-20){\line(0,-1){3.7}}\put(22.6,-20){\line(1,0){3}}\put(22.6,-23.6){\line(1,0){6}}\end{picture}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\put(1,1.2){\line(1,0){6.5}}\end{picture}

Similar questions