Math, asked by kessonmurray, 1 year ago

The zeros of a parabola are −5 and −3. The point (0, 60) is on the graph as represented by the equation. 60 = a(0 + 5)(0 + 3) What is the value of a?

Answers

Answered by MaheswariS
1

\underline{\textsf{Given:}}

\textsf{Zeros of the parabola are -5 and -3}

\underline{\textsf{To find:}}

\textsf{The value of a}

\mathsf{}

\underline{\textsf{Solution:}}

\textsf{Since the zeros of the parabola are -5 and -3, we can write}

\textsf{the equation of the parabola as}

\mathsf{y=k(x+5)(x+3)}

\mathsf{y=k(x^2+8x+15)}

\textsf{It passes through (0,60)}

\mathsf{60=k(0+8(0)+15)}

\mathsf{60=15k}

\implies\mathsf{k=4}

\textsf{The equation of the parabola becomes}

\mathsf{y=4(x^2+8x+15)}

\mathsf{y=4(x^2+8x)+60}

\mathsf{y-60=4(x^2+8x)}

\textsf{To make R.H.S of the equation as a perfect square}

\mathsf{y-60=4((x^2+8x+16)-16)}

\mathsf{y-60=4(x+4)^2-64}

\mathsf{4(x+4)^2=y+4}

\mathsf{(x+4)^2=\dfrac{1}{4}(y+4)}

\textsf{Comparing this with}\;\mathsf{(x-h)^2=4a(y-k)}\,\textsf{we get}

\mathsf{4a=\dfrac{1}{4}}

\implies\boxed{\mathsf{a=\dfrac{1}{16}}}

\underline{\textsf{Answer:}}

\textsf{The value of a is}\;\mathsf{\dfrac{1}{16}}

Similar questions