the zeros of polynomial x^2- 3x - 4 are
Answers
Answered by
0
Answer:
x=1,-4
Step-by-step explanation:
x^2-3x-4
=> x^2-x+4x-4=0
=> x(x-1)+4(x-1)=0
=> (x-1)(x+4)=0
=>x= 1 or x= -4
I hope it helps you
plz mark me as brainliest
Answered by
0
We have,
![\quad {x}^{2} - 3x - 4 \\ \\ = {x}^{2} - (4 - 1)x - 4 \\ \\ = {x}^{2} - 4x + x - 4 \\ \\ = x(x - 4) + 1(x - 4) \\ \\ = (x - 4)(x + 1) \quad {x}^{2} - 3x - 4 \\ \\ = {x}^{2} - (4 - 1)x - 4 \\ \\ = {x}^{2} - 4x + x - 4 \\ \\ = x(x - 4) + 1(x - 4) \\ \\ = (x - 4)(x + 1)](https://tex.z-dn.net/?f=+%5Cquad+%7Bx%7D%5E%7B2%7D+-+3x+-+4+%5C%5C+%5C%5C+%3D+%7Bx%7D%5E%7B2%7D+-+%284+-+1%29x+-+4+%5C%5C+%5C%5C+%3D+%7Bx%7D%5E%7B2%7D+-+4x+%2B+x+-+4+%5C%5C+%5C%5C+%3D+x%28x+-+4%29+%2B+1%28x+-+4%29+%5C%5C+%5C%5C+%3D+%28x+-+4%29%28x+%2B+1%29)
For finding the zeroes of the polynomial,
![\mathtt{let} \qquad {x}^{2} - 3x - 4 = 0 \\ \\ \implies (x - 4)(x + 1) = 0 \\ \\ \implies x - 4 = 0 \quad || \: or \quad x + 1 = 0 \\ \quad \quad \quad \quad \quad \: \: \quad \quad || \\ \implies x = 4 \qquad \: \: \: || \Rightarrow \: \: \: x = - 1 \mathtt{let} \qquad {x}^{2} - 3x - 4 = 0 \\ \\ \implies (x - 4)(x + 1) = 0 \\ \\ \implies x - 4 = 0 \quad || \: or \quad x + 1 = 0 \\ \quad \quad \quad \quad \quad \: \: \quad \quad || \\ \implies x = 4 \qquad \: \: \: || \Rightarrow \: \: \: x = - 1](https://tex.z-dn.net/?f=+%5Cmathtt%7Blet%7D+%5Cqquad+%7Bx%7D%5E%7B2%7D+-+3x+-+4+%3D+0+%5C%5C+%5C%5C+%5Cimplies+%28x+-+4%29%28x+%2B+1%29+%3D+0+%5C%5C+%5C%5C+%5Cimplies+x+-+4+%3D+0+%5Cquad+%7C%7C+%5C%3A+or+%5Cquad+x+%2B+1+%3D+0+%5C%5C+%5Cquad+%5Cquad+%5Cquad+%5Cquad+%5Cquad+%5C%3A+%5C%3A+%5Cquad+%5Cquad+%7C%7C+%5C%5C+%5Cimplies+x+%3D+4+%5Cqquad+%5C%3A+%5C%3A+%5C%3A+%7C%7C+%5CRightarrow+%5C%3A+%5C%3A+%5C%3A+x+%3D+-+1)
Hence ( x = 4 ) or ( x = - 1 ) .
Thus, 4 and - 1 are the roots of the given polynomial.
For finding the zeroes of the polynomial,
Hence ( x = 4 ) or ( x = - 1 ) .
Thus, 4 and - 1 are the roots of the given polynomial.
Similar questions