Math, asked by Shruti1220, 10 months ago

the zeros of the polynomial ax cube + 3 x square - b x - 6 are -1 and -2 find the values of a and b also find the third zero

Answers

Answered by appudas2001
0

Answer:

ax³ + 3x² - bx - 6

x = -1 , -2

put the values of x in Equation

we get,

a(-1)³ + 3(-1)² - b(-1) - 6 = 0

=> -a + 3 + b - 6 = 0

=> b - a = 3--------(1)

now x = - 2

a(- 2)³ + 3(-2)² - b(-2) - 6 = 0

=> -8a + 12 + 2b - 6 = 0

=> 2b - 8a + 6 = 0

=> b - 4a = -3--------(2)

from--(1) and -----(2)

b - a = 3

b - 4a = -3

(-)___(+)__(+)

———————

3a = 6

=> a = 2 put in --(1)

b - 3 = 2

=> b = 5 now put this value in Equation

ax³ + 3x² - bx - 6 = 0

=> 2x³ + 3x² - 5x - 6 = 0

two zeroes are given (-1 , -2)

(x + 1)(x + 2) = x² + 2x + x + 2 = 0

=> x² + 3x + 2 =0

x² + 3x + 2)2x³ + 3x² - 5x - 6(2x - 3

2x³ + 6x² + 4x

- - -

—————————

-3x² - 9x - 6

-3x² - 9x - 6

+ + +

—————————

0 0 0

hence another zeroes is

2x - 3 = 0

=> x = 3/2

hope it helped you: )

if it fulfilled your need pls mark it as brainliest

Read more on Brainly.in - https://brainly.in/question/17929886#readmore

Step-by-step explanation:

Answered by Avirohan9435152489
0

ax³ + 3x² - bx - 6

x = -1 , -2

a(-1)³ + 3(-1)² - b(-1) - 6 = 0

=> -a + 3 + b - 6 = 0

=> b - a = 3 (1)

a(- 2)³ + 3(-2)² - b(-2) - 6 = 0

=> -8a + 12 + 2b - 6 = 0

=> 2b - 8a + 6 = 0

b - a = 3

b - 4a = -3

3a = 6

=> a = 2

b - 3 =

ax³ + 3x² - bx - 6 = 0

=> 2x³ + 3x² - 5x - 6 = 0

(x + 1)(x + 2) = x² + 2x + x + 2 = 0

=> x² + 3x + 2 =0

x² + 3x + 2)2x³ + 3x² - 5x - 6(2x - 3

2x³ + 6xsq + 4x

-3x² - 9x - 6

-3x² - 9x - 6

2x - 3 = 0

=> x = 3/2

Similar questions