Math, asked by tariqmohammad1111, 2 months ago

The zeros of the polynomial X square + 7 x + 10 are​

Answers

Answered by ThePhenonal
3

\sf x²+7x+10=0

\sf x²+5x+2x+10=0

\sf x(x+5)+2(x+5)=0

\sf (x+2)=0 \:\: or \:\:(x+5)=0

\sf x=-2 \:\: or\:\: x=-5

Answered by CuteAnswerer
7

GIVEN :

  • \bf {x^2 +7x +10}

TO FIND :

  • The zeros of the quadratic polynomial.

SOLUTION :

:\implies \sf{x^2 +7x +10 = 0} \\ \\

  • By middle term splitting :

:\implies \sf{x^2+2x + 5x+10= 0} \\ \\

:\implies \sf{x \bigg(x +2 \bigg)+ 5\bigg(x+ 2\bigg) = 0} \\ \\

 :\implies \sf{\bigg(x+2 \bigg) \bigg(x + 5\bigg) = 0} \\ \\

:\implies \sf{\bigg(x+2 \bigg) = 0 \: , \: \bigg(x + 5\bigg) = 0} \\ \\

:\implies\sf{x = 0 - 2 \: , \: x = 0 - 5} \\ \\

\to\underline{\huge{\boxed{\blue{\frak{x = -2\: , \: x = -5}}}}}

\huge{\green{ \therefore}} The zeros of the quadratic polynomial are -2 and -5.


Skyllen: Nice!!
Similar questions