Math, asked by river93, 6 months ago

the zeros of the polynomial x2(it's x square)-3x-4 are. a)4,1. b)4,-1. c)-4,1. d)-4,-1​

Answers

Answered by manju214
2

p(x)=x²-3x-4

let p(x)=0

=>x²-3x-4=0

=>x²+x-4x-4=0

=>x(x+1)-4(x+1)=0

=>(x+1)(x-4)=0

:.x =4,-1

so option (b) is the answer

Answered by aryan073
2

Answer

(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)(⌒o⌒)

\pink{\huge{\underline{\underline{❤Answer❤}}}}

 \bigstar\small \boxed { \sf \red{ \: the \: zeros \: of \: the \: polynomial \:  {x}^{2}  - 3x - 4 \: are = \: to \: find }}

 \small \boxed { \sf \pink { options: (a)   4 and 1 }}

 \small \boxed { \sf \pink {(b)4 \: and \:  - 1}}

 \small \boxed{ \sf \pink{(c) \:  - 4 \: and \: 1}}

 \small \boxed { \sf  \pink{(d) \:  - 4 \: and \:  - 1}}

 \underline { \sf{solution \: }}

  \implies \displaystyle \sf{ {x}^{2}  - 3x  - 4 = 0}

 \implies \displaystyle \sf{ {x}^{2}  - 4x + x - 4 = 0}

 \implies \displaystyle \sf{x(x - 4) + 1(x - 4) = 0}

 \implies \displaystyle \sf{(x - 4) = 0 \: and \: (x + 1) = 0}

 \implies \displaystyle \sf{x = 4 \: and \: x =  - 1}

  \pink  \bigstar \displaystyle \boxed{ \sf \green{ \: option(b)  \: 4 \: and \:- 1 \: is \: correct  }}

Similar questions