Math, asked by drakejohnson3101, 10 months ago

The zeros of the quadratic polynomial x^2+4x+k are alpha and beta . Evaluate the value of K if 5alpha+2beta=1

Answers

Answered by Anonymous
9

p(x) =  {x}^{2}  + 4x + k

zeroes \: are \:  \alpha  \: and \:  \beta

 \alpha +   \beta  =   - 4 \\  \alpha  =  - 4 -  \beta  \\ \\   \alpha  \beta  = k

5 \alpha  + 2 \beta  = 1 \\ 5( - 4 -  \beta ) + 2 \beta  = 1 \\  - 20 - 5 \beta  + 2 \beta  = 1 \\  - 3 \beta  - 20 = 1 \\  - 3 \beta  = 21 \\  \beta  =  - 7

 \alpha  =  - 4 - ( - 7) \\  \alpha  =  - 4 + 7 \\  \alpha  = 3

k = 3( - 7) \\ k =  - 21

ᴴᴼᴾᴱ ᴵᵀ ᴴᴱᴸᴾˢ ❤

fᎾᏞᏞᎾᎳ mᎬ

Similar questions