Math, asked by vaishnavi4126, 2 months ago

the zeros of the quardratic polynomial x^2 +24x+119​

Answers

Answered by Anonymous
7

Answer:

 {(x)}^{2}  + 24x \:  + 119 \\  \\  {(x)}^{2}  + 17x \:  + 7x \:  + 119 \\  \\ x {}(x \:  + 17) \: 7(x + 17) \\  \\ (x + 7) \: (x + 17)

( X + 7 ). ( X + 17 )

X = -7

X = -17

Answered by chaudharyvikramc39sl
1

Answer:

\text{The Correct Answer is $x=-7$\ and \ $x=-17$}

Step-by-step explanation:

We have to calculate zeros of the quadratic polynomial

$x^2+24x+119=0$

\text{Solution : }\\\text{Using the quadratic formula where $a=1,b=24,c=119$}\\then\   x= \frac{-b\pm\sqrt{b^2-4ac}}{2a}$\\$x=\frac{-24\pm\sqrt{24^2-4(1)(119)}}{2(1)}$\\$x=\frac{-24\pm\sqrt{576-476}}{2}$\\$x=\frac{-24\pm\sqrt{100}}{2}$\\\\\text{The Discriminant $b^2-4ac > 0$ so, there are two real roots.}\\

Simplify the radical:

$x=\frac{-24\pm 10}{2}$\\$x=-\frac{14}{2} \ \ \ x=-\frac{34}{2}$\\\text{which becomes}\\\\$x=-7$ and $x=-17$

#SPJ3

Similar questions