Math, asked by yugagarwalagarwal, 8 months ago


the zeros ofp (x)=x2-4x+3 are

Answers

Answered by Anonymous
2

Solution:-

Method :- 1

Factorization method

 \rm :  \implies {x}^{2}  - 4x + 3 = 0

Splitting into middle term

\rm :  \implies  {x}^{2}  - 3x  - x + 3 = 0

\rm :  \implies x(x - 3) - (x - 3) = 0

\rm :  \implies (x - 3)(x - 1) = 0

\rm :  \implies x = 3 \:  \: and \:  \: x \:  = 1

Method :- 2

Quadratic formula method

 \boxed{ \rm \: x =  \dfrac{ - b \pm \sqrt{D} }{2a} }

given equation :-

\rm :  \implies  {x}^{2}  - 4x + 3

Now compare with

 \rm :  \implies  {a}^{2}  + bx + c = 0

So

 \rm :  \implies a = 1 \:  \: b \:  =  - 4 \: and \: c \:  = 3

Find the Discriminant

 \rm :  \implies D =  {b }^{2}  - 4ac

Now we get

\rm :  \implies D =  ( - 4) {}^{2}  - 4 \times 3 \times 1

\rm :  \implies D = 16 - 12

\rm :  \implies D = 4

Now use quadratic formula

 \boxed{ \rm \: x =  \dfrac{ - b \pm \sqrt{D} }{2a} }

\rm :  \implies x =  \dfrac{ - ( - 4) \pm \sqrt{4} }{2 \times 1}

\rm :  \implies x =  \dfrac{4 \pm2}{2}

\rm :  \implies x =  \dfrac{4 + 2}{2} \:  and \: x =  \dfrac{4 - 2}{2}

\rm :  \implies x = 3 \:  \:  \: and \:  \: x = 1

Answered by Lueenu22
0

Step-by-step explanation:

\huge\mathfrak{\color{orange}{\underline{\underline{Answer♡}}}}

Answer♡

if you will give thanks to this answer then I will give you 1000 free points .I am promising.

refer the attachment

\huge\underline{ \red{❥L} \green{u}\blue{e} \purple{e} \orange{n}\pink{u}}\:

\huge\green{Thanks}

Attachments:
Similar questions