Math, asked by tarapanditpress, 6 months ago

thearea
of rectangular room
is 65 1/4 m^2?
If its breadth is 5 7/16 m. What is its length?​

Answers

Answered by Agamsain
1

Answer :-

  • Length of the Room = 12 m

Given :-

  • \sf Area \: of \: Room \longrightarrow 65 \: \dfrac{1}{4} = \bold{ \dfrac{261}{4} } \: m^2
  • \sf Width \: of \: Room \longrightarrow 5 \: \dfrac{7}{16} = \bold{ \dfrac{87}{16} } \: m

To Find :-

  • Length of the Room = ?

Explanation :-

As above given, we have Area & Width of the room. So, Let the Length of the Room to be 'x' m.

\blue { \boxed { \bf \bigstar \: Area \: of \: Room = Length \times Width \: \bigstar}}

\sf : \: \longmapsto Length \times Width = Area \: of \: Room

\sf : \: \longmapsto x \times \dfrac{87}{16} = \dfrac{261}{4}

\sf : \: \longmapsto x =\dfrac{261}{4} \div \dfrac{87}{16}

\sf : \: \longmapsto x =\dfrac{261}{4} \times \dfrac{16}{87}

\sf : \: \longmapsto x =\dfrac{\cancel{261}}{\cancel{4}} \times \dfrac{\cancel{16}}{\cancel{87}}

\sf : \: \longmapsto x = 3 \times 4

\green { \underline { \boxed { \sf : \: \longmapsto \bold{x = 12 \: m} \quad \star }}}

For verification,

\sf : \: \longmapsto Length \times Width = Area \: of \: Room

\sf : \: \longmapsto 12 \times \dfrac{87}{16} = \dfrac{261}{4}

\sf : \: \longmapsto \dfrac{1044}{16} = \dfrac{261}{4}

\sf : \: \longmapsto 65 \: \dfrac{1}{4} = \dfrac{261}{4}

\sf : \: \longmapsto \dfrac{261}{4} = \dfrac{261}{4}

\bf : \: \longmapsto L.H.S = R.H.S \quad \star

Hence, the Length of the room is 12 m.

Similar questions