Math, asked by autumnovung, 2 months ago

Thed denominater of a rational number 9 is

Answers

Answered by Celestria
3

Answer:

hi friend

Step-by-step explanation:

your answer is 1

pls mark me as brainliest and give a heart

Answered by Mbappe007
2

Answer:

\begin{gathered} \red{\large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese \: \: \: TO \: \: FIND \: \: \: \maltese }}}}} \\ \\ \huge \mathfrak{Derivative \: \: of } \\ \\ \bf \frac{x+cosx}{tanx} \end{gathered}

✠ TOFIND ✠

✠ TOFIND ✠

Derivativeof

tanx

x+cosx

\orange{\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese \: \: \: REQUIRED \: \: INFO \: \: \: \maltese }}}}}

✠ REQUIREDINFO ✠

✠ REQUIREDINFO ✠

\begin{gathered} \bigstar \: \: \: \mathfrak{ \underline{\huge Quotient \: \: Rule}} \\ \\ \bf \frac{d}{dx} \frac{u}{v} = \frac{v . \frac{du}{dx} - u \frac{dv}{dx} }{v {}^{2} } \\ \\ \bigstar \bf \: \: \: \frac{d}{dx} cosx = - sinx \\ \\ \bigstar \: \: \: \bf \frac{d}{dx} tanx = {sec}^{2} x\end{gathered}

QuotientRule

dx

d

v

u

=

v

2

v.

dx

du

−u

dx

dv

dx

d

cosx=−sinx

dx

d

tanx=sec

2

x

\green{ \large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese \: \: \: SOLUTION \: \: \: \maltese }}}}}

✠ SOLUTION ✠

✠ SOLUTION ✠

\begin{gathered} \bf \frac{d}{dx} ( \frac{x + cosx}{tanx} ) \\ \\ = \sf \frac{tanx. \frac{d}{dx} (x + cosx) - (x + cosx) \frac{d}{dx} tanx}{ {(tanx)}^{2} } \\ ( \bf \because Quotient \: Rule ) \\ \\ = \sf\frac{tanx(1 - sinx) - (x + cosx) {sec}^{2} x}{ {tan}^{2} x} \end{gathered}

dx

d

(

tanx

x+cosx

)

=

(tanx)

2

tanx.

dx

d

(x+cosx)−(x+cosx)

dx

d

tanx

(∵QuotientRule)

=

tan

2

x

tanx(1−sinx)−(x+cosx)sec

2

x

\begin{gathered} \sf = \frac{tanx \: - \: tanx.sinx \: - \: x {sec}^{2} x \: - \: cosx. {sec}^{2} x}{ {tan}^{2}x } \\ \\ =\sf \frac{tanx \: - \: tanx.sinx \: - \: x {sec}^{2} x \: - \: cosx. \dfrac{1}{ {cos}^{2}x } }{ {tan}^{2}x } \\ \\ = \bf\frac{tanx \: - \: tanx.sinx \: - \: x {sec}^{2} x \: - \: {sec}x}{ {tan}^{2}x } \end{gathered}

=

tan

2

x

tanx−tanx.sinx−xsec

2

x−cosx.sec

2

x

=

tan

2

x

tanx−tanx.sinx−xsec

2

x−cosx.

cos

2

x

1

=

tan

2

x

tanx−tanx.sinx−xsec

2

x−secx

\large\red{ \mathfrak{ \text{W}hich \: \: is \: \text{y}our \: \: Required \: \: \text{ A}nswer }}WhichisyourRequired Answer

Similar questions