Math, asked by vanibattus, 8 months ago

their ages
7. The denominator of a rational number is greater than its numerator by 8. If the
numerator is increased by 17 and the denominator is decreased by 1, the number
3.
obtained is Find the rational number.
NI​

Answers

Answered by Anonymous
91

GIVEN:-

  • The denominator of a rational number is greater than Numerator by 8.

  • if the Numerator is increased by 17 and denominator decreased by 1.

  • The Number becomes 3.

TO FIND:-

  • The Ration Number.

{\huge{\underline{\rm{\blue{Let}}}}}

\implies\rm{Numerator=x}

\implies\rm{Denominator=(x+8)}

\implies\rm{Original\:Rational\:Number=\dfrac{x}{x+8}}

According to Question..

\implies\rm{Numerator=(x+17)}

\implies\rm{Denominator=(x+8-1)=(x+7)}

\implies\rm{New\:Rational\:Number=\dfrac{x+17}{x+7}=3}

\implies\rm{3(x+7)=x+17}

\implies\rm{3x+21=x+17}

\implies\rm{2x=4}

\implies\rm{x=\dfrac{4}{2}}

\implies\rm{x=2}

Hence,

\implies\rm{Numerator=x=2}

\implies\rm{Denominator=(x+8)=10}

Hence, The Rational Number is \rm{\dfrac{2}{10}}.


Anonymous: Awesome :P
Answered by Anonymous
186

\sf\large{\underline{\underline{Let:}}}

\sf{The\:numerator\:of\:the\:rational\:number\:be\:"x"}

\sf{Therefore,\: its\: denominator\:will\:be\:x + 8}

\sf{\underline{\underline{So:}}}

\sf{The\:rational\:number\:will\:be\: \dfrac{x}{x+8}}

\sf{\underline{\underline{According\:to\:the\:Question:}}}

\sf\red{ \implies x + \dfrac{17}{x} + 8 - 1 = \dfrac{3}{2}}

\sf\purple{\implies  x + \dfrac{17}{x} + 7 = \dfrac{3}{2}}

\sf\orange{\implies  2(x + 17) = 3(x + 7)}

\sf\green{ \implies 2x + 34 = 3x + 21}

\sf\red{ \implies 34 - 21 = 3x - 2x}

\sf\purple{\implies 13 = x}

\sf{\underline{\underline{Therefore:}}}

\sf{Numerator\:of\:the\:rational\:number = x = 13}

\sf{Denominator\:of\:the\:rational\:number = x + 8}\sf{= 13 + 8 = 21}

\sf\underline{\underline{Hence:}}

\sf\red{Rational \:Number = \dfrac{13}{21}}


Anonymous: Perfect : D
Similar questions