Math, asked by pratikpawar6491, 2 months ago

then @
If u, v be implicit functions of x, y such that fi(u,v.x,y) = 0,f(u, v, x,y) = 0
is given by​

Answers

Answered by kartikkumar21671
0

Answer

Correct option is

A

−1

Now x=1⇒1−2coty−1=0

⇒coty=0 or y=

2

π

Let u,v,w be the functions of x then ⇒u+v+w=0 and

dx

du

+

dx

dv

+

dx

dw

=0

Take u=x

2x

⇒logu=logx

2x

=2xlogx using the power form of logarithm

u

1

dx

du

=2[x×

x

1

+logx]=2(1+logx)

dx

du

=2u(1+logx)=2x

2x

(1+logx)

Take v=−2x

x

coty

dx

dv

=−2[x

2

(−csc

2

y)

dx

dy

+coty

dx

d(x

x

)

]

=−2[x

2

(−csc

2

y)

dx

dy

+x

x

coty(1+logx)]

Take w=−1

dx

dw

=

dx

d(−1)

=0 since differential of a constant=0

Now,

dx

du

+

dx

dv

+

dx

dw

=0

⇒2x

2x

(1+logx)−2[x

2

(−csc

2

y)

dx

dy

+x

x

coty(1+logx)]+0=0

dx

dy

=

−2x

2

csc

2

y

2x

2x

(1+logx)−2x

2

(1+logx)coty

⇒[

dx

dy

]

(1,

2

π

)

=

−2×1

2

csc

2

2

π

2×1

2

(1+log1)−2×1

2

(1+log1)cot

2

π

⇒y

(1)=

−2

1(1+log1)

sin

2

2

π

since

csc

2

2

π

1

=sin

2

2

π

∴y

(1)=−1×1=−1 since sin

2

π

=1

Similar questions