then find the value
Attachments:
Answers
Answered by
1
after doi g this u hv to rationalise it
Attachments:
jaruljoshi10:
is my answer correct
Answered by
23
- sin θ = 3/4 ,
- Value of (tan θ . cosec θ - 1 )
We Know,
★ cosec θ = Hypotenuse/Perpendicular
★ tan θ = Perpendicular/Base
★ sin θ = Perpendicular/Hypotenuse
__________________________
In Diagram,
- AB = perpendicular = 3
- BC = Base
- CA = Hypotenuse = 4.
_________________________
Now, in right ∆ABC
Pythagoras's Theorem
★ (Hypotenuse)² = (perpendicular)² + (Base)²
So Now,
➥ Base² = (Hypotenuse)² - (perpendicular)²
➥ BC² = 4² - 3²
➥ BC² = 16 - 9
➥ BC² = 7
➥ BC = √7
_________________________
So Now calculate tan θ.
➥ tan θ = Perpendicular/Base = AB/BC
➥ tan θ = 3/√7
________________________
Now Calculate cosec θ,
➥cosec θ = Hypotenuse/Perpendicular = CA/AB
➥ cosec θ = 4/3
_______________________
Now, Calculate ,
➥ (tan θ . cosec θ - 1 )
Keep all above values,
➥ ( 3/√7) × ( 4/3) - 1
➥ 4/√7 - 1
➥ (4 - √7)/√7 Ans.
_______________________
- Value of (tan θ . cosec θ - 1 ) will be = (4 - √7)/√7.
________________
Attachments:
Similar questions