Math, asked by surojitsaha990690, 8 months ago

then
Given Polynornial p(t) = t^4 - t³ +t²+6 then p(-1) is​

Answers

Answered by nithya3322
1

Answer:

Answer is 9

Step-by-step explanation:

p(t) = t^4 - t^3 + t^2 + 6

p(-1) = (-1)^4 - (-1)^3 - (-1)^2 +6

= 1 - (-1) + 1 + 6

= 1 + 1 + 1 + 6

1 + 1 + 1 + 6 = 3 + 6

= 9

Hope it helps......

Answered by aryan073
1

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\huge \pink{ \boxed { \blue { \mathfrak{ \overbrace { \overbrace{ \fcolorbox{pink}{aqua}{ \underline{}{ \underline { \pink{ \ddag \: question \ddag}}}}}}}}}}

\huge\tt\red{Given:}

 \:  \:  \clubsuit\bf{polnomial \: p(t) =  {t}^{4}  -  {t}^{3}  +  {t}^{2} + 6}

 \:  \:  \:  \implies  \bf{p(t) =  {t}^{4}  -  {t}^{3}  +  {t}^{2}  + 6}

 \:  \:  \:  \bigstar  \boxed{ \sf{find \: the \: value \: in \: p( - 1) = }}

 \:  \:  \:  \:  \implies \bf{p( - 1) =  {( - 1)}^{4}  -  {( - 1)}^{3}  +  {( - 1)}^{2}  + 6}

 \:  \:  \:  \implies \bf{p( - 1) = 1 + 1 + 1 + 6}

 \:  \:  \:  \:  \implies \bf{p( - 1) = 9}

 \:  \:  \:  \:  \blue \bigstar  \boxed{ \sf \pink{p( - 1) = 9 \: is \: the \: correct \: answer \: of \: given \: polynomial}}

Similar questions