Math, asked by muskamsingh14, 7 months ago

then prove a - b = 1​

Attachments:

Answers

Answered by hiyabhatt8126
0

Answer:

 (\ \ {a}^{b}  \times  {3}^{2}  \times ( {3 \times \frac{ - b}{2} )}^{ - 2}  -  {27}^{b} ) \div  {3}^{3a}  \times  {2}^{3}  = 1 \div 27 \\(  {a}^{b}  \times  {3}^{2}  \times  {3}^{b}  -  {27}^{b} ) \div  {3}^{3a}  \times  {2}^{3}  = 1 \div  {3}^{3}  \\  {(a}^{b}  \times  {3}^{2}   \times  {3}^{b}(1 - 9))  \div  {3}^{3a}  \times  {2}^{3}  = 1 \div  {3}^{3}  \\ ( {a}^{b}  \times  {3}^{2}  \times ( - {24}^{b} )) \div  {3}^{3a}  \times  {2}^{3}  = 1 \div  {3}^{3}  \\ ( {a}^{b}  \times   {3}^{2 - 3a}  \times ( -  {24}^{b} )) \  = 1 \div ( {6}^{3} ) \\ (  { - 24a}^{b}  \times  {3}^{2 - 3a} ) = 1 \div ( {6}^{3} ) \\ 3( {  - 8a}^{b} \times  {1}^{2 - 3a}  ) = 1 \div(  { {2}^{3} } \times  {3}^{3} )   \\ (  { - 8a}^{b}  \times  {1}^{2 - 3a} ) = 1 \div ( {2}^{3}  \times  {3}^{4}) \\

Step-by-step explanation:

u can solve ahead easily

pls mark branliest

pls

Similar questions