Chemistry, asked by StrongGirl, 7 months ago

Then the value of ΔH of reaction, ΔG_1 and ΔG_2 (in kg) at temperature T_1 and T_2 respectively are?

Attachments:

Answers

Answered by amansharma264
19

ANSWER.

The value of ∆H of the reaction ∆G1 and ∆G2

( in kj) at temperature T1 and T2

=> 46.14 , -6.2 , - 14.3

option [ 1 ] is correct

EXPLANATION.

 \sf \to \:  t_{1} \:  = 50 {}^{0}c \:  \:  \: and \:  \:  \:  k_{1} = 10 \\  \\  \sf \to \:  t_{2} = 100 {}^{0}c \:  \:  \:  \: and \:  \:  \:  k_{2} \:  = 100

 \sf \to \: formula \: of \:  \Delta \: h \: of \: reaction \\  \\  \sf \to \:  log( \frac{ k_{2}}{ k_{1} } )  =  \frac{ \Delta \: H  }{2.303R} ( \frac{1}{ t_{1} }  -  \frac{1}{ t_{2}})

 \sf \to \:  log( \dfrac{100}{10} ) =  \dfrac{ \Delta \: H  }{2.303 \times 8.314}   ( \dfrac{1}{323}  -  \dfrac{1}{373} ) \\  \\  \\  \sf \to \:  log(10)  =  \frac{ \Delta \:H }{2.303 \times 8.314} ( \frac{50}{323 \times 373} ) \\  \\  \\  \sf \to \:  \Delta \: H \:  =  \frac{2.303 \times 8.314 \times 323 \times 373}{50}  \\  \\  \\  \sf \to \: \Delta \: H = 46136.57j \:  = 46.14kj

 \sf \to \: \Delta \: G \:  =  - 2.303 RT  log(k)  \\  \\  \sf \to \: at \:  t_{1} = 50 {}^{0}  = 323k \:  \: and \:  \:  k_{1} = 10 \\  \\  \sf \to \:  \Delta \: G  =  - 2.303 \times 8.314 \times 323 \times  log(10)  \\  \\  \sf \to \: \Delta \: G  =  - 6184.5j = 6.2kj

 \sf \to \: \Delta \: G  =  - 2.303RT log(k)  \\  \\  \sf \to \: at \:  t_{2} = 100 {}^{0} c \:  = 373k \:  \:  \: and \:  \:  \:  \:  k_{2} = 100 \\  \\  \sf \to \:  \Delta \: G =  - 2.303 \times 8.314 \times 373 \times  log(100)  \\  \\  \sf \to \: \Delta \: G =  - 14283.7j =  - 14.3kj

Answered by Creepyboy95
23

 \sf  \implies \:The \:value \:of \:H \:of \:the \:reaction \:G1 \:and \:G2\:

 \sf  \implies \:( in kj) \:at \:temperature \:T1 \:and \:T2\:

 \sf  \implies \: 46.14 \:, -6.2 \:, - \:14.3\:

 \sf  \implies \: option \:[ 1 ] \:is \:correct\:

Similar questions