Math, asked by sanjambirsingh2008, 1 day ago


​then (x/y)^3 + (x/y)^6

Attachments:

Answers

Answered by talpadadilip417
0

Answer:

→Use Division Distributive Property: \tt{(\frac{x}{y})}^{a}=\frac{{x}^{a}}{{y}^{a}}

\tt\red{\implies\frac{{x}^{6}}{{y}^{6}}+{(\frac{x}{y})}^{3}}

→Use Division Distributive Property: \tt{(\frac{x}{y})}^{a}=\frac{{x}^{a}}{{y}^{a}}

\sf\blue{\implies\frac{{x}^{6}}{{y}^{6}}+\frac{{x}^{3}}{{y}^{3}}}

→ Rewrite the expression with a common denominator.

\tt\pink{\implies\frac{{x}^{6}+{x}^{3}{y}^{3}}{{y}^{6}}}

→4 Factor out the common term \tt{x}^{3}

.

\tt\green{\implies\frac{{x}^{3}({x}^{3}+{y}^{3})}{{y}^{6}}}

→ Use Sum of Cubes: \tt{a}^{3}+{b}^{3}=(a+b)({a}^{2}-ab+{b}^{2})

\tt\blue{\implies\frac{{x}^{3}((x+y)({x}^{2}-(x)(y)+{y}^{2}))}{{y}^{6}}}

→ Remove parentheses.

\red{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\tt\orange{\implies\frac{{x}^{3}(x+y)({x}^{2}-xy+{y}^{2})}{{y}^{6}}}}}}}}}}}

Similar questions