Math, asked by sparshsinha, 1 month ago

then xy.z? is:
logx logy logz
If
y-Z
Z-X X-y
(A) x + y + z
(C) - 1
(B) O
(D) 1​

Attachments:

Answers

Answered by senboni123456
2

Answer:

Step-by-step explanation:

We have,

\tt{\blue{\dfrac{log(x)}{y-z}=\dfrac{log(y)}{z-x}=\dfrac{log(z)}{x-y}}}

Now, let

\sf{\dfrac{log(x)}{y-z}=\dfrac{log(y)}{z-x}=\dfrac{log(z)}{x-y}=k}

So,

\sf{log(x)=k(y-z)\,\,\,\,,log(y)=k(z-x)\,\,\,\,,log(z)=k(x-y)}

Now,

\sf{\purple{Let\,\,\,\eta=x^{x}\cdot\,y^{y}\cdot\,z^{z}}}

\sf{\implies\,log(\eta)=log(x^{x}\cdot\,y^{y}\cdot\,z^{z})}

\sf{\implies\,log(\eta)=log(x^{x})+log(y^{y})+log(z^{z})}

\sf{\implies\,log(\eta)=x\,log(x)+y\,log(y)+z\,log(z)}

\sf{\implies\,log(\eta)=x\cdot\,k(y-z)+y\cdot\,k(z-x)+z\cdot\,k(x-y)}

\sf{\implies\,log(\eta)=k\{x(y-z)+y(z-x)+z(x-y)\}}

\sf{\implies\,log(\eta)=k\{xy-zx+yz-xy+zx-yz\}}

\sf{\implies\,log(\eta)=k\{0\}}

\sf{\implies\,log(\eta)=0}

\sf{\implies\,\eta=e^0}

\sf{\implies\,\eta=1}

\bf{\green{Hence,\,\,\,x^{x}\cdot\,y^{y}\cdot\,z^{z}=1}}

Similar questions