Math, asked by arpit513625, 11 months ago

Theorem:-10.1:the length of tangent drawn from an external point to a circle are equal.​

Answers

Answered by mayank258036
1

Answer:

PQ=QT

Step-by-step explanation:

Let two tangent PT and QT are drawn to circle of centre O as shown in figure.

Both the given tangents PT and QT touch to the circle at P and Q respectively.

We have to proof : length of PT = length of QT

Construction :- draw a line segment ,from centre O to external point T { touching point of two tangents } .

Now ∆POT and ∆QOT

We know, tangent makes right angle with radius of circle.

Here, PO and QO are radii . So, ∠OPT = ∠OQT = 90°

Now, it is clear that both the triangles ∆POT and QOT are right angled triangle.

nd a common hypotenuse OT of these [ as shown in figure ]

Now, come to the concept ,

∆POT and ∆QOT

∠OPT = OQT = 90°

Common hypotenuse OT

And OP = OQ [ OP and OQ are radii]

So, R - H - S rule of similarity

∆POT ~ ∆QOT

Hence, OP/OQ = PT/QT = OT/OT

PT/QT = 1

PT = QT [ hence proved]

Answered by salini65
0

Answer:

hello see the attachment...

Attachments:
Similar questions