Math, asked by mjsabiq, 4 days ago

theorem 2.6
the ratio of the areas of two similar triangle is equal to square of the ratio of their corresponding sides

Answers

Answered by Teluguwala
6

Appropriate Question :

The ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.

 \:

Step-by-step Explanation :

Given :

ΔABC ∼ ΔPQR

 \:

RTP :

 \green\star \:  \displaystyle  \tt \frac{ar(ΔABC )}{ar(ΔPQR)}  =  \bigg( \frac{AB}{PQ}  \bigg)^{2}  = \bigg( \frac{BC}{QR}  \bigg)^{2}  =  \bigg( \frac{CA}{RP}  \bigg)^{2}

 \:

Construction :

Draw AM ⊥ BC and PN ⊥ QR.

 \:

Proof :

 \red \star \:  \displaystyle  \tt \frac{ar(ΔABC )}{ar(ΔPQR)} =  \frac{ \frac{1}{2}  \times BC \times AM}{ \frac{1}{2}  \times QR×PN }  =  \frac{BC \times AM}{ QR×PN} \:   -  -  - (1)

In ΔABM & ΔPQN

  • ∠B = ∠Q ( ∵ ΔABM ∼ ΔPQN )
  • ∠M = ∠N = 90°

∴ ΔABM ∼ ΔPQN (by AA similarly)

 \red \star \:  \displaystyle \tt \frac{AM}{PN}  =  \frac{AB}{PQ}  \: -  -  - (2)

Also ΔABC ∼ ΔPQR (given)

 \red \star \:  \displaystyle  \boxed{\tt \:  \frac{AB}{PQ}  =  \frac{BC}{QR}}   \tt \: =  \frac{AC}{PR}  \:  -  -  - (3)

∴ \: \displaystyle  \tt \frac{ar(ΔABC )}{ar(ΔPQR)}  =  \frac{AB}{PQ} \times \frac{AB}{PQ} \:  \:  \:  \:  \:  \:  \: from \: (1), \: (2) \: and(3) \\ \tt =   \bigg(\frac{AB}{PQ} \bigg)^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Now by using (3), We get

 \purple \star\:  \displaystyle  \tt \frac{ar(ΔABC )}{ar(ΔPQR)}  =  \bigg( \frac{AB}{PQ}  \bigg)^{2}  = \bigg( \frac{BC}{QR}  \bigg)^{2}  =  \bigg( \frac{CA}{RP}  \bigg)^{2}

Hence proved.

 \:

Attachments:
Similar questions