Math, asked by pal746251, 11 months ago

Theorem 6.1 : prove that If a line is drawn parallel to one side of a triangle to intersect the
other two sides in distinct points, the other two sides are divided in the same
ratio.​

Answers

Answered by Anonymous
56

⠀⠀⠀⠀⠀\huge\underline\mathrm{Thales'\:Theorem-}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bold{\underline{\rm{\blue{Statement-}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

If a line is drawn parallel to one side of a triangle to intersect the other two sides on distinct points, then prove that the other two sides are divided in the same ratio.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bold{\underline{\rm{\blue{Given-}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • In ∆ABC, BC || DE

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bold{\underline{\rm{\blue{To\:prove-}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • \rm{\dfrac{AD}{BD}\:=\dfrac{AE}{EC}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bold{\underline{\rm{\blue{Construction-}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • Join BE and CD.
  • Draw EF ⊥ AB and DG ⊥ AC

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bold{\underline{\rm{\blue{Proof-}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

We know that,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large{\boxed{\rm{Area\:of\:\triangle=\dfrac{1}{2}\times{Base}\times{Height}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\rm{\dfrac{ar \triangle  \: ADE}{ar \triangle \: BDE}  =  \dfrac{  \cancel{\frac{1}{2}} \times AD \times  \cancel{EF}}{ \cancel{ \frac{1}{2}} \times {BD} \times  \cancel{EF} } }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

: \implies \rm{\dfrac{ar \triangle  \: ADE}{ar \triangle \: BDE}  =  \dfrac{AD}{BD}} ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀– eq (1)

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Now,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\rm{\dfrac{ar \triangle  \: ADE}{ar \triangle \: CDE}  =  \dfrac{  \cancel{\frac{1}{2}} \times AE \times  \cancel{DG}}{ \cancel{ \frac{1}{2}} \times {CE} \times  \cancel{DG} } }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

: \implies \rm{\dfrac{ar \triangle  \: ADE}{ar \triangle \: CDE}  =  \dfrac{AE}{EC}} ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀– eq (2)

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Also, we know that, triangles having same base and lying between same parallel lines are equal in area.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\therefore \rm{Ar\:\triangle\:BDE\:=\:Ar\:\triangle\:CDE} ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀– eq (3)

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

★ Using (1),(2) and (3), we get,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large{\rm{\boxed{\red{\dfrac{AD}{BD}\:=\dfrac{AE}{EC}}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Hence proved!

Attachments:
Similar questions