THEOREM : Equal chords of a circle are equidisiant from the centre........................... PROVE IT..........................
Answers
Answered by
1
Answer:
Given a circle with centre O and chords AB = CD
Draw OP⊥ AB and OQ ⊥ CD
Hence AP = BP = (1/2)AB and CQ = QD = (1/2)CD
Also ∠OPA = 90° and ∠OQC = 90°
Since AB = CD
⇒ (1/2) AB = (1/2) CD
⇒ AP = CQ
In Δ’s OPA and OQC,
∠OPA = ∠OQC = 90°
AP = CQ (proved)
OA = OC (Radii)
∴ ΔOPA ≅ ΔOQC (By RHS congruence criterion)
Hence OP = OQ (CPCT)
Similar questions