Math, asked by vidhiarmy, 1 month ago

There are 2 red balls,6 blue balls and 5 green balls in a bag. A ball is drawn from the bag without looking into the bag.What is the probability of getting a non blue ball?​

Answers

Answered by Anonymous
49

\large\underline{\underline{\red{✴{\pmb{\sf{\:Given :-}}}}}}

  • ➬ No. of red balls = 2
  • ➬ No. of blue balls = 6
  • ➬ No. of green balls = 5

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{\underline{\red{✴{\pmb{\sf{\:To \:  Find :-}}}}}}

  • ➬ What is the probability of getting a non-blue ball ?

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{\underline{\red{✴{\pmb{\sf{\:Solution :-}}}}}}

We know that :

\large\blue\bigstar{\underline{\boxed{\color{orange}{\sf{Probability = \dfrac{F}{T}}}}}}

Here :

\begin{gathered} \pink{\pmb{\begin{gathered}\begin{gathered}\bf\:\rm :\longmapsto\:  \color{cyan} Outcomes \: \begin{cases} &\sf{Favourable \:  outcomes{\small_{(Non - blue  \: balls)}} = 7} \\ \\ &\sf{Total  \: outcomes{\small_{(Total  \: balls)}} = 13 } \end{cases}\end{gathered}\end{gathered}}}\end{gathered}

Now Probability :

{:\implies{\sf{Probability = \dfrac{F}{T}}}}

\large\orange{:\longmapsto{\sf{ S.I = {\green{\underline{\sf{ \dfrac{7}{13}}}}}}}}

Therefore :

Probability of getting non-blue balls is 7/13 .

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions