Math, asked by baggageeta64, 2 days ago

There are a total of 84 biscuits on a plate in a ratio of 7 vanilla : 5 chocolate biscuits. How many of each type of biscuit are there?​

Answers

Answered by kashifmohammed2008
1

Answer:

35

Step-by-step explanation:

Total biscuits on the plate = 84

ratio of vanilla and chocolate = 7 : 5

sum of the ratio = 7 + 5 = 12

12 equal parts = 84

1 equal part = 84 / 12 = 7

Therefore ,

number of vanilla = 7 parts

= 7 × 7 = 49

number of chocolates = 5 parts

= 5 × 7

= 35

I hope this helps you.

Answered by Johnsonmijo
2

Answer:

If there are 84 biscuits on a plate in a ratio of 7 vanilla: 5 chocolates then there are 49 vanilla and 35 chocolate biscuits on the plate.

Step-by-step explanation:

Given

The total number of biscuits on a plate = 84

Ratio of vanilla biscuits to chocolate biscuits = 7: 5

If we take 7x as number of vanilla biscuits then number of chocolate biscuits is 5x

So , 7x+ 5x = 84

12x = 84

x=\frac{84}{12} \\\\=7

Therefore number of vanilla biscuits= 7x = 7×7=49

Number of chocolate biscuits =5x=5×7=35

So the number of vanilla biscuits on the plate = 49

the number of chocolate biscuits on the plate = 35

Similar questions