There are infinite black and white dots on a plane. Prove that the distance between one black dot and one white dot is one unit.
Answers
Answered by
5
We can't, because it's false. If all black dots happen to be on the line x=0and white dots on the line x=π (and the rest of the plane is neither white nor black), there is no such pair.
Now if each point of the plane were either black or white (and there were infinitely many of each type), that would be different. In fact, it is sufficient to have at least one of each color.
Answered by
28
Explanation:
Good Evening sis (◠‿・)—☆
Hii Ankita
I'm Ashi
from class 10th
There are infinite black and white dots on a plane. Prove that the distance between one black dot and one white dot is one unit
- We can't, because it's false. If all black dots happen to be on the line x=0and white dots on the line x=π (and the rest of the plane is neither white nor black), there is no such pair.
- Now if each point of the plane were either black or white (and there were infinitely many of each type), that would be different. In fact, it is sufficient to have at least one of each color.
Attachments:
Similar questions