Math, asked by sajalsahu8687, 17 days ago

there are n A. M between 7 and 85 such that (n ._ 3)th mean : nth mean is as 11:24; find n

Answers

Answered by mathdude500
12

\large\underline{\sf{Solution-}}

Given that,

There are n A. M. between two numbers 7 and 85.

Let assume that

\rm \: A_1, \: A_2, \: A_3, -  -  - A_n \: be \: n \: AM

So, that

\rm \:7, A_1, \: A_2, \: A_3, -  -  - A_n,85 \: are \: in \: AP

So, we have

First term, a = 7

Number of terms = n + 2

nth term = 85

Let assume that Common difference of an AP be d

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Tʜᴜs,

\rm \: 85 = 7 + (n + 2 - 1)d

\rm \: 85 = 7 + (n + 1)d

\rm \: 85 -  7  =  (n + 1)d

\rm \: 78  =  (n + 1)d

\bf\implies \:d = \dfrac{78}{n + 1}  -  -  - (1) \\

According to statement,

\rm \:  \dfrac{A_{n - 3}}{A_n}  \: =  \: \dfrac{11}{24}

\rm \: \dfrac{a + (n - 3)d}{a + nd}  = \dfrac{11}{24}

\rm \: 24a + 24d(n - 3) = 11a + 11nd

\rm \: 24a - 11a  =  11nd - 24d(n - 3)

\rm \: 13a  =  (11n - 24n + 72)

\rm \: 13a  =  (72 - 13n)d

On substituting the value of a and d, we get

\rm \: 13 \times 7  =  (72 - 13n) \times \dfrac{78}{n + 1}

\rm \: 7  =  (72 - 13n) \times \dfrac{6}{n + 1}

\rm \: 7n + 7 = 432 - 78n

\rm \: 7n + 78n = 432 - 7

\rm \: 85n = 425

\bf\implies \:n \:  =  \: 5 \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

1. The sum of n AM's inserted between two numbers a and b is n times the single AM between a and b.

2. If A is the AM between two numbers a and b, then

\rm \: A \:  =  \: \dfrac{a + b}{2}  \\

Similar questions