Math, asked by bindunppn1511, 10 months ago

There are n A. M. s between 5 and 35 such that 2nd mean : last mean 1:4 find n

Answers

Answered by MaheswariS
11

Answer:

The value of n is 17

Step-by-step explanation:

\text{Let }A_1,A_2,.....A_n\text{ be n arithmetic means between 5 and 35}

\text{Then,}

A_1=5+d

A_2=5+2d

....

.....

A_n=5+nd

35=5+(n+1)d

\implies\,30=(n+1)d........(1)

\text{Also,}

A_2:A_n=1:4

\implies\frac{A_2}{A_n}=\frac{1}{4}

\implies\frac{5+2d}{5+nd}=\frac{1}{4}

\implies\,20+8d=5+nd

\implies\,15=(n-8)d

\implies\,d=\frac{15}{n-8}..........(2)

\text{using (2) in (1), we get }

30=(n+1)\frac{15}{n-8}

\implies\,2=\frac{n+1}{n-8}

\implies\,2n-16=n+1

\implies\,\boxed{\bf\,n=17}

Answered by Alcaa
0

The value of n is 17.

Step-by-step explanation:

We are given that there are n A. M. s between 5 and 35 such that 2nd mean: last mean 1:4.

Let the series be 5, A_1, A_2,A_3, ..........,A_n, 35 which means there are n A.M.'s between 5 and 35.

Here a = first term = 5 and let d = common difference.

So, 2nd mean = 3rd term of the series

A_3 = a + (n - 1)d = a + 2d

Simiarly, last mean = (n+1)th term of the series

        A_n_+_1 = a + (n - 1)d = a + (n + 1 - 1)d = a + nd  

Now, the ratio given to us is;

                   \frac{a+2d}{a+nd}=\frac{1}{4}

                 4a + 8d = a + nd

                   nd = 3a + 8d

                   nd = 15 + 8d       {as given a = 5} ------------ [Equation 1]

Now, as we know that if there are n arithmetic means between two number, then there are (n+2) terms in an A.P.

So, A_n_+_2 = a + (n - 1)d = a + (n + 2 - 1)d = a + (n + 1)d  

           35  =  5 + (n + 1)d

           30 = nd + d

           nd = 30 - d

Now, putting value of nd in equation 1 we get;

             30 - d = 15 + 8d

             8d + d = 30 - 15

                  d =  \frac{15}{9}

Put this value of d in equation 1 we get;

                   nd = 15 + 8d

                     n  =  \frac{15+8d}{d}

                     n  =  \frac{15+(8\times \frac{15}{9}) }{\frac{15}{9} }

                     n  =  \frac{135 + 120}{9} \times \frac{9}{15}  = \frac{255}{15}

                     n  = 17

Similar questions