Math, asked by dev77neupane, 3 days ago

there are n arithmetic means between 5 and 35. If the second mean:the last mean=1:4,find n​

Answers

Answered by Anonymous
0

Answer:

what is unavailable

sorry for spamming

5 and 35. If the second mean:the last mean=1:4,find n

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Let assume that

\rm :\longmapsto\:A_1,A_2,A_3, -  -  -  -  -  - ,A_n \: be \: n \: arithmetic \: means

between 5 and 35.

So,

\rm :\longmapsto\:5,A_1,A_2,A_3, -  -  -  -- ,A_n ,35 \: are \: in \: AP

So, we have

↝ First term of an AP, a = 5

↝ Number of terms = n + 2

↝ Last term of an AP = 35

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Tʜᴜs,

On substituting the values, we get

\rm :\longmapsto\:35 = 5 + (n + 2 - 1)d

\rm :\longmapsto\:35 - 5 = (n + 1)d

\rm :\longmapsto\:30 = (n + 1)d

\rm \implies\:\boxed{ \tt{ \: d \:  =  \:  \frac{30}{n + 1} \:  \: }}

Now, According to statement, it is given that

\rm :\longmapsto\:\dfrac{A_2}{A_n}  = \dfrac{1}{4}

\rm :\longmapsto\:\dfrac{a + 2d}{a + nd}  = \dfrac{1}{4}

\rm :\longmapsto\:4a + 8d = a + nd

\rm :\longmapsto\:4a - a = nd - 8d

\rm :\longmapsto\:3a = (n - 8)d

On substituting the values of a and d, we get

\rm :\longmapsto\:3 \times 5 = (n - 8) \times \dfrac{30}{n + 1}

\rm :\longmapsto\:15 = (n - 8) \times \dfrac{30}{n + 1}

\rm :\longmapsto\:1 = (n - 8) \times \dfrac{2}{n + 1}

\rm :\longmapsto\:n + 1 = 2n - 16

\rm :\longmapsto\:n - 2n =  - 1 - 16

\rm :\longmapsto\:- n =  - 17

\rm \implies\:\boxed{ \tt{ \: \:  n \:  \:  =  \:  \: 17 \:  \: }}

Additional Information :-

Let a and b are two positive real numbers, then

\rm :\longmapsto\:\boxed{ \tt{ \: AM \:  =  \: \dfrac{a + b}{2} \: }}

\rm :\longmapsto\:\boxed{ \tt{ \: GM \:  =  \:  \sqrt{ab} \: }}

\rm :\longmapsto\:\boxed{ \tt{ \: HM \:  =  \:  \frac{2ab}{a \:  +  \: b} \: }}

\rm :\longmapsto\:\boxed{ \tt{ \: AM \:  \geqslant  \: GM \:  \geqslant  \: HM \:  \: }}

Similar questions