Math, asked by tusharp1974, 4 months ago

There are only 1-rupee and 2-rupee coins in a bag. The total value of the 1-rupee coins is the same as the total value of the 2-rupee coins.
If the bag has x coins in all, what is their total value (in Rs.)?
A
3x
B
4x⁄3
C
3x⁄4
D
3x⁄2
please answer this with explaination i will mark you as brainliest

Answers

Answered by BrainlyFlash
52

{\huge{\star{\underbrace{\tt{\red{Answer}}}}}}{\huge{\star}}

 {\bf{\huge{ \  \frac{3x}{2}}}}

Explanation:

\Large{\blue{\tt{\underline{\underline{Given \ :-}}}}}

{\tt{☞  \ Num \ of \ ₹1 \ coins \ = \ Num \ of \ ₹2 \ coins}}

{\tt{☞ \ Total  \ number \ of \ coins \ = \ x}}

\Large{\green{\tt{\underline{\underline{To \ find  \ :-}}}}}

{\tt{ • \ Total \ values \ of \ coins}}

\Large{\orange{\tt{\underline{\underline{Solution \ :-}}}}}

{\mathfrak{✿Since  \ number \ of \ ₹1 \ coins \ is \ equal \ to \ number \ of}} \\{\mathfrak { ₹2 \ coins}}

{\sf{\leadsto \ Number \: of \: ₹1 \: coins \:  =  \frac{x}{2} }}

 {\sf{\leadsto \ Number \: of \: ₹2 \: coins \:  =  \frac{x}{2} }}

 {\sf{\leadsto \ Value \: of \: ₹1 \: cons \:  =  \frac{x}{2}  \times 1 =  \frac{x}{2} }}

 {\sf{\leadsto \ Value \: of \: ₹2 \: coins \:  = \frac{ x}{ \cancel2}  \times  \cancel2 = x}}

 \\

 {\sf{\hookrightarrow \ Total \: value \: coins =  \frac{x}{2}  + x}}

 {\sf{\hookrightarrow \ Total \: value \: coins =  \frac{x}{2}  + \frac{2x}{2}}}

  {\sf{\hookrightarrow  \ Total \: value \: coins =  \frac{x + 2x}{2}  }}

  {\sf{\hookrightarrow \ Total \: value \: coins =  \frac{3x}{2}}}

 \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\Large\mathcal{\fcolorbox{lime}{black}{\red{Hope it's help  ⚓⚓}}}

\large\mathcal{\fcolorbox{yellow}{teal}{\orange{Please mark me as brainliest (. ❛ ᴗ ❛.)}}}

Answered by sanket2612
2

Answer:

the correct answer is Option B i.e. 4x/3.

Step-by-step explanation:

Step 1:

Let's assume that the number of 1-rupee coins is a, and 2-rupee coins is b.

Step 2:

Total value of 1-rupee coin = a

Total value of 2-rupee coin = 2b

Total value of all coins = a + 2b

Step 3:

Given,

total value of the 1-rupee coins = total value of the 2-rupee coins

Hence, a = 2b

Step 4:

Total coins = a + b = x

Hence, substituting a = 2b;

3b = x

Hence,

b = x/3

Step 5:

Total value = a + 2b = 2b + 2b = 4b

Substituting b = x/3;

Total value = 4(x/3) = 4x/3

Step 6:

Hence, the correct answer is Option B i.e. 4x/3.

#SPJ2

Similar questions