Math, asked by ishma56, 1 month ago

There are three geometrical means between a and b. If the first and the third means are 25 and 125 respectively, find a and b.​

Answers

Answered by raghavdhital123
1

Answer:

It is very simple just you have to focus on the question

Step-by-step explanation:

1st of all just draw a basic concept about mean...It to boring to write hope that you will understand from photo

Attachments:
Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that,

There are 3 geometric means between a and b.

So, Let assume that,

\rm :\longmapsto\:3 \: geometric \: means \: be \: g_1, \: g_2 \: and \: g_3

So, that,

\rm :\longmapsto\:a, \: g_1, \: g_2, \: g_3, \: b \: are \: in \: GP

Further, given that

\rm :\longmapsto\:\boxed{ \tt{ \: g_1 = 25 \: }}

and

\rm :\longmapsto\:\boxed{ \tt{ \: g_3 = 125 \: }}

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an geometric sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\: {r}^{n \:  -  \: 1} }}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

r is the common ratio.

Tʜᴜs,

\rm :\longmapsto\:g_1 = 25

\rm \implies\: {ar}^{2 - 1} = 25

\rm \implies\: {ar}^{} = 25 -  -  -  - (1)

Also,

\rm :\longmapsto\:g_3 = 125

\rm \implies\: {ar}^{4 - 1} = 125

\rm \implies\: {ar}^{3} = 125

\rm :\longmapsto\:ar \times  {r}^{2}  = 125

\rm :\longmapsto\:25 \times  {r}^{2}  = 125

\rm :\longmapsto\:{r}^{2}  = 5

\bf\implies \:r \:  =  \:  \pm \:  \sqrt{5}

So, on substituting the value of r in equation (1), we get

 \red{\rm :\longmapsto\:When \: r \:  =  \:  \sqrt{5} }

So,

\rm \implies\: a \times  \sqrt{5}  = 25

\rm \implies\: a  = 5 \sqrt{5}

 \red{\rm :\longmapsto\:When \: r \:  =  \:  -  \:  \sqrt{5} }

So,

\rm \implies\: -  a \times  \sqrt{5}  = 25

\rm \implies\: a \:   = \:  -  \:  5 \sqrt{5}

Now,

\rm :\longmapsto\:b

\rm \:  =  \:a_5

\rm \:  =  \: {ar}^{4}

So, Case - 1

 \red{\begin{gathered}\begin{gathered}\bf\:\rm :\longmapsto\:\begin{cases} &\sf{a = 5 \sqrt{5} }  \\ \\ &\sf{r =  \sqrt{5} } \end{cases}\end{gathered}\end{gathered}}

Thus,

\rm :\longmapsto\:b = 5 \sqrt{5}  \times  {( \sqrt{5} )}^{4} = 5 \sqrt{5} \times 25 = 125 \sqrt{5}

Case - 2

 \red{\begin{gathered}\begin{gathered}\bf\:\rm :\longmapsto\:\begin{cases} &\sf{a \:  = \:  -  \:  5 \sqrt{5} }  \\ \\ &\sf{r  \: =   \:  -  \: \sqrt{5} } \end{cases}\end{gathered}\end{gathered}}

Thus,

\rm :\longmapsto\:b =  - 5 \sqrt{5}  \times  {(  - \sqrt{5} )}^{4} = -  5 \sqrt{5} \times 25 = -  125 \sqrt{5}

Similar questions