Math, asked by saniya106, 2 months ago

There are two concentric circles given. The radius of the bigger circle is 37 cm and
a 70 cm long chord of that circle touches the smaller circle. Find the radius of the
smaller circle.​

Answers

Answered by MaheswariS
16

\textbf{Given:}

\textsf{There are two concentric circles}

\textsf{The radius of the bigger circle is 37 cm and a 70 cm long}

\textsf{chord of that circle touches the smaller circle}

\textbf{To find:}

\textsf{Radius of the circle}

\textbf{Solution:}

\textsf{Let O be the centre of the circle}

\textsf{Let AB be the chord of length 70 cm}

\mathsf{Draw\;OC\;\perp\;AB}

\mathsf{Then,\;AC=BC=35}

\mathsf{In\;right\;\triangle\;OCB}

\mathsf{OB^2=OC^2+BC^2}

\mathsf{37^2=OC^2+35^2}

\mathsf{OC^2=37^2-35^2}

\mathsf{OC^2=(37-35)(37+35)}

\mathsf{OC^2=(2)(72)}

\mathsf{OC^2=144}

\mathsf{OC=\sqrt{144}}

\implies\boxed{\mathsf{OC=12\;cm}}

\textbf{Answer:}

\textsf{Radius of the smaller circle is 12 cm}

Attachments:
Answered by mahek77777
6

\textbf\red{Given:}

\textsf{There are two concentric circles}

\textsf{The radius of the bigger circle is 37 cm and a 70 cm long}

\textsf{chord of that circle touches the smaller circle}

\textbf\red{To find:}

\textsf{Radius of the circle}

\textbf\red{Solution:}

\textsf{Let O be the centre of the circle}

\textsf{Let AB be the chord of length 70 cm}

\mathsf{Draw\;OC\;\perp\;AB}

\mathsf{Then,\;AC=BC=35}

\mathsf{In\;right\;\triangle\;OCB}

\mathsf{OB^2=OC^2+BC^2}

\mathsf{37^2=OC^2+35^2}

\mathsf{OC^2=37^2-35^2}

\mathsf{OC^2=(37-35)(37+35)}

\mathsf{OC^2=(2)(72)}

\mathsf{OC^2=144}

\mathsf{OC=\sqrt{144}}

\implies\boxed{\mathsf{OC=12\;cm}}

\textbf{Answer:}

\textsf{Radius of the smaller circle is 12 cm}

Similar questions