Physics, asked by nishantrajaug1552, 11 months ago

There are two force vectors, one of 5 N and other of 12 N at what angle two vectors be added to get resultant vector of 17 N, 7 N and 13 N respectively

Answers

Answered by Anonymous
20

AnswEr :

Two force vectors 5N and 12N are resolved at an angle ∅.

Law of Cosines

\sf R = \sqrt{A^2 + B^2 + 2AB cos \phi}

When the resultant is 17 N,the angle is :

 \sf \: 17 =  \sqrt{ {5}^{2} +  {12}^{2} + 2(5)(12)cos \phi  }  \\  \\  \longrightarrow \:  \sf \: 289 = 169 + 120cos \phi \\  \\  \longrightarrow \:  \sf \: 120cos \phi = 120 \\  \\  \longrightarrow \:  \sf \: cos \phi =1 (cos0)\\  \\  \longrightarrow  \boxed{\boxed{ \sf \phi = 0 {}^{ \circ}} }

The two vectors are parallel to eachother

\rule{300}{2}

When the resultant is 7 N,the ange is :

 \sf7 =  \sqrt{ {5}^{2}  +  {12}^{2} + 2(5)(12)cos \phi }  \\   \\  \longrightarrow \:  \sf49 = 169 + 120 cos \phi \\  \\  \longrightarrow \:  \sf \: 120cos \phi =   - 120 \\  \\  \longrightarrow \:  \sf \:cos \phi =  - 1(cos180) \\  \\  \longrightarrow \:  \boxed{ \boxed{ \sf \phi =  {180}^{ \circ}}}

The vectors are antiparallel to eachother

\rule{300}{2}

When the resultant is 13 N,the angle is :

 \sf13 =  \sqrt{ {5}^{2}  +  {12}^{2} + 2(5)(12)cos \phi }  \\   \\  \longrightarrow \:  \sf169 = 169 + 120 cos \phi \\  \\  \longrightarrow \:  \sf \: 120cos \phi =   0 \\  \\  \longrightarrow \:  \sf \:cos \phi =  cos90 \\  \\  \longrightarrow \:  \boxed{ \boxed{ \sf \phi =  {90}^{ \circ}}}

The vectors are orthogonally inclined to eachother

\rule{300}{2}

\rule{300}{2}

Similar questions