There is a certain number consisting of 3 digits which is equal to 13 times the sum of the digits and if 495 is added to the number, the digits will be reversed. Also the sum of the extreme digits is greater than the middle digit by 2. Find the number.
Answers
Answered by
3
Answer:
Let a 3-digit number be abc
this implies abc = 13(a+b+c)
100a+10b+c=13a+13b+13c
87a-3b-12c=0(÷by3both side)
29a-4c=b ---- eq(1)
Also a+c =b+2------eq(2)
a+c=29a-4c+2
a-29a+c+4c =2
-28a +5c =2 -------eq(3)
on reversing the digits we have
100c+10b+c=100a+10b+a+495
100c-c+a-99a=495
99c-99a=495(÷both sides by99)
we get c-a=5------eq(4)×by5
5c-5a=25----eq(6)
on subtracting eq(3) from eq(6)
we get 23a =23
therefore a=1
substitute a=1 in eq(4) we get
c=6
now put c=6 in eq(2)
we get b=5
therefore abc=156
Similar questions