Math, asked by nileshvajani79, 1 year ago

There is a pavement all around the inner boundary of a circular park radius 14 meter.the radius of the circular region of the park excluding the pavement is 10 meter.find the width of the pavement and its area.

Answers

Answered by prettystefina11
5

Answer:

301.7 m^{2}

Step-by-step explanation:

The radius of the circular park including the pavement = 14 meters.

The radius of the circular park excluding the pavement = 14 meters.

So, the width of the pavement = Radius of the park including the pavement  — Radius of the park excluding the pavement .

                                               = 14 — 10

                                               = 4 meters.

Area of a circle = πr^{2}, where r is the radius of the circle.

Area of the circular park including the pavement = 22/7 x 14^{2}

                                                                                 = 616 m^{2}

Area of the circular park excluding the pavement = 22/7 x 10^{2}

                                                                                   = 314.3 m^{2}

Area of the pavement = Area of the circular park including the pavement - Area of the circular park excluding the pavement

                                    = 616 - 314.3

                                    = 301.7 m^{2}

Similar questions