Math, asked by goutham17p, 4 months ago

There is a rectangle of length 22 cm. Find its area if its perimeter is 75 cm.​

Answers

Answered by thakurrahul007
1

Answer:

  • given length is 22 now perimter = 2(l+b) =75
  • it gives breadth as 31/2
  • now area=length×breadth=341

Step-by-step explanation:

please mark me as brainlist

Answered by Anonymous
56

Given:

  • There is a rectangle of length 22 cm
  • its perimeter is 75 cm.

\\ \\

To Find:

  • it's area

Solution:

◐  Here ,we have got the perimeter and the length of the rectangle so, with the help of the given clues let's find the breadth and then the area.

{ \purple{ \underline{ \mathfrak{Given \: clues \dag}}}}

\\

  • Perimeter: 75cm
  • length: 22cm

 \\

 {\purple{ \underline{ \mathfrak{As \: we \: know \: that \dag}}}} \:

 \\

 {\longrightarrow}\blue{ \underline{ \boxed{ \pink{ \mathfrak{ \: perimeter = 2(length + breadth)}}} \bigstar}}

Now, let's substitute the values and find out the breadth

{ : \implies} \sf \: perimeter = 2(l + b) \\  \\  \\ { : \implies} \sf75 = 2(22 + b) \\  \\  \\ { : \implies} \sf75 = 44 + 2b \\  \\  \\ { : \implies} \sf2b = 75 - 44 \\  \\  \\ { : \implies} \sf \: 2b = 31 \\  \\  \\ { : \implies} \sf \: b =  \frac{31}{2}  \\  \\  \\  { : \implies} \sf \: \ b = 15.5 \bigstar

 {\therefore} \:  \: { \rm {\underline{the \: breadth \: of \: the \: rectangle \: is \: 15.5cm}}}

 \rule{300}{2}

Now, let's find the area of the rectangle:

 {\purple{ \underline{ \mathfrak{As \: we \: know \: that \dag}}}}

{ \longrightarrow }\blue{ \underline{ \boxed{ \pink{ \mathfrak{ area = lenght \times breadth}}} \bigstar }}

let's substitute the values again now:

{ : \implies} \sf \: area \:  = l \times b \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \sf \: area = 22 \times 15.5 \\  \\  \\ { : \implies} \sf \: area = 341 {cm}^{2}  \bigstar

hence , the area of the given rectangle is 341cm²

___________________________________________

More to know:

 \leadsto \sf \: area \: of \: a \: triangle =  \frac{1}{2}  \times bh \\  \\ \leadsto \sf \: area \: of \: a  \: rhombus =  \frac{ d_{2} \times d_{1} }{2 \: }  \\  \\\leadsto \sf \: area \: of \: a  \: square =  {side}^{2}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \leadsto \sf \: area \: of \: a  \: paralellogram = b \times h

Similar questions