Math, asked by hiteshreemaniar, 6 hours ago

There is a rectangular farm with length( a²+b²)m and breadth(a²-b²) . Find area of the farm.​

Answers

Answered by bedti
1

Answer:

The area of the remaining part of the farm :

\begin{gathered}({a}^{4} + 7 {a}^{2} {b}^{2} + 2 {b}^{4}) \: m^2 \\ \end{gathered}

(a

4

+7a

2

b

2

+2b

4

)m

2

Step-by-step explanation:

To form algebraic expression of the given condition; There is a rectangular farm with

length l= (2a²+3b²) metre and

breadth b= (a²+b²) metre.

Area of Rectangular farm: l × b

\begin{gathered}(2 {a}^{2} + 3 {b}^{2} ) \times ( {a}^{2} + {b}^{2} ) \\ \\ = > 2 {a}^{4} + 2 {a}^{2} {b}^{2} + 3 {b}^{2} {a}^{2} + 3 {b}^{4} \\ \\ = (2 {a}^{4} + 5 {a}^{2} {b}^{2} + 3 {b}^{4})\:m^2 \\ \\ \\ \end{gathered}

(2a

2

+3b

2

)×(a

2

+b

2

)

=>2a

4

+2a

2

b

2

+3b

2

a

2

+3b

4

=(2a

4

+5a

2

b

2

+3b

4

)m

2

ATQ The farmer used a square shaped plot of the farm to build a house. The side of the plot was (a²-b²) metre.

Area of square plot= side × side

\begin{gathered}( {a}^{2} - {b}^{2} ) \times ( {a}^{2} - {b}^{2} ) \\ \\ = {a}^{4} - {a}^{2} {b}^{2} - {b}^{2} {a}^{2} + {b}^{4} \\ \\ = > ( {a}^{4} - 2{a}^{2} {b}^{2} + {b}^{4}) \:\: m^2\\ \\ \end{gathered}

(a

2

−b

2

)×(a

2

−b

2

)

=a

4

−a

2

b

2

−b

2

a

2

+b

4

=>(a

4

−2a

2

b

2

+b

4

)m

2

Area of remaining part of the farm:

Area of rectangular farm- Area of square plot

\begin{gathered} = > 2 {a}^{4} + 5 {a}^{2} {b}^{2} + 3 {b}^{4} - ( {a}^{4} - 2{a}^{2} {b}^{2} + {b}^{4}) \\ \\ = > 2 {a}^{4} + 5 {a}^{2} {b}^{2} + 3 {b}^{4} - {a}^{4} + 2{a}^{2} {b}^{2} - {b}^{4}) \\ \\ = > 2 {a}^{4} - {a}^{4} + 5 {a}^{2} {b}^{2} + 2 {a}^{2} {b}^{2} + 3{b}^{4} - {b}^{4} \\ \\ = > ({a}^{4} + 7 {a}^{2} {b}^{2} + 2 {b}^{4}) \: \: m^2\\ \\ \end{gathered}

=>2a

4

+5a

2

b

2

+3b

4

−(a

4

−2a

2

b

2

+b

4

)

=>2a

4

+5a

2

b

2

+3b

4

−a

4

+2a

2

b

2

−b

4

)

=>2a

4

−a

4

+5a

2

b

2

+2a

2

b

2

+3b

4

−b

4

=>(a

4

+7a

2

b

2

+2b

4

)m

2

Step-by-step explanation:

army

Similar questions