There were 1250 skilled and 400 unskilled workers in a private company in the year 2011. There
were 220 female workers and of them, 140 were unskilled. In the year 2012, the number of skilled
workers was 1475 and of them, 1300 were males. Out of 250 unskilled workers, 200 were males.
In 2013, there were 1700 skilled and 50 unskilled workers. Out of total workers, 250 were females
of them 240 were skilled. In the year 2014, there were 2000 workers and of them, 2% were
unskilled. Out of total workers, 300 were females and of them, 10 were unskilled. Present the above
data in the form of table.
Answers
Answer:
780and 26%
Explanation:
Answer:
\LARGE{\bf{\underline{\underline{GIVEN:-}}}}
GIVEN:−
\sf \bullet \ \ \dfrac{(1+sinA-cosA)^2}{(1+sinA+cosA)^2}∙
(1+sinA+cosA)
2
(1+sinA−cosA)
2
\LARGE{\bf{\underline{\underline{SOLUTION:-}}}}
SOLUTION:−
LHS:
\sf \to \dfrac{(1+sinA-cosA)^2}{(1+sinA+cosA)^2}→
(1+sinA+cosA)
2
(1+sinA−cosA)
2
Expand the fractions using .
\sf \to \dfrac{(cos^2-2sincos+sin^2-2cos+2sin+1)}{(cos^2+2sincos+sin^2+2cos+2sin+1)}→
(cos
2
+2sincos+sin
2
+2cos+2sin+1)
(cos
2
−2sincos+sin
2
−2cos+2sin+1)
Rearrange the terms.
\sf \to \dfrac{(cos^2+sin^2-2sincos-2cos+2sin+1)}{(cos^2+sin^2+2sincos+2cos+2sin+1)}→
(cos
2
+sin
2
+2sincos+2cos+2sin+1)
(cos
2
+sin
2
−2sincos−2cos+2sin+1)
We know that cos²A+sin²A=1.
\sf \to \dfrac{1-2sincos-2cos}{2sin+1}→
2sin+1
1−2sincos−2cos
Now here, take -2cos common from the numerator and +2cos common from the denominator.
\sf \to \dfrac{1-2cos(sin+2)}{2sin+1}→
2sin+1
1−2cos(sin+2)
Now, rearrange the terms, add 1 and 1 and take 2 common.
\to\sf\dfrac{1+1+2sin-2cos}{sin+1}→
sin+1
1+1+2sin−2cos
\to\sf\dfrac{2+2sin-2cos}{sin+1}→
sin+1
2+2sin−2cos
Take 2 common.
\to \sf \dfrac{ 2(1+sin) -2cos(sin+1) }{ 2(1+sin) + 2cos(sin +1 ) }→
2(1+sin)+2cos(sin+1)
2(1+sin)−2cos(sin+1)
Take (1+sin) common.
\to \sf \dfrac{ \not{2}\cancel{(1+sin)}(1 - cos) }{\not{2}\cancel{(1+sin )}(1 + cos )}→
2
(1+sin)
(1+cos)
2
(1+sin)
(1−cos)
\to \sf{\red{\dfrac{1-cosA}{1+cosA} }}→
1+cosA
1−cosA
LHS=RHS.
HENCE PROVED!
FUNDAMENTAL TRIGONOMETRIC RATIOS:
\begin{gathered} \begin{gathered}\begin{gathered}\boxed{\substack{\displaystyle \sf sin^2 \theta+cos^2 \theta = 1 \\\\ \displaystyle \sf 1+cot^2 \theta=cosec^2 \theta \\\\ \displaystyle \sf 1+tan^2 \theta=sec^2 \theta}}\end{gathered}\end{gathered}\end{gathered}
sin
2
θ+cos
2
θ=1
1+cot
2
θ=cosec
2
θ
1+tan
2
θ=sec
2
θ
T-RATIOS:
\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3} }{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }& 1 & \sqrt{3} & \rm Not \: De fined \\ \\ \rm cosec A & \rm Not \: De fined & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm Not \: De fined \\ \\ \rm cot A & \rm Not \: De fined & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered}
∠A
sinA
cosA
tanA
cosecA
secA
cotA
0
∘
0
1
0
NotDefined
1
NotDefined
30
∘
2
1
2
3
3
1
2
3
2
3
45
∘
2
1
2
1
1
2
2
1
60
∘
2
3
2
1
3
3
2
2
3
1
90
∘
1
0
NotDefined
1
NotDefined
0