Business Studies, asked by rajputketan23, 6 months ago

There were 1250 skilled and 400 unskilled workers in a private company in the year 2011. There

were 220 female workers and of them, 140 were unskilled. In the year 2012, the number of skilled

workers was 1475 and of them, 1300 were males. Out of 250 unskilled workers, 200 were males.

In 2013, there were 1700 skilled and 50 unskilled workers. Out of total workers, 250 were females

of them 240 were skilled. In the year 2014, there were 2000 workers and of them, 2% were

unskilled. Out of total workers, 300 were females and of them, 10 were unskilled. Present the above

data in the form of table.​

Answers

Answered by vinayakdev959
9

Answer:

780and 26%

Explanation:

Answer:

\LARGE{\bf{\underline{\underline{GIVEN:-}}}}

GIVEN:−

\sf \bullet \ \ \dfrac{(1+sinA-cosA)^2}{(1+sinA+cosA)^2}∙

(1+sinA+cosA)

2

(1+sinA−cosA)

2

\LARGE{\bf{\underline{\underline{SOLUTION:-}}}}

SOLUTION:−

LHS:

\sf \to \dfrac{(1+sinA-cosA)^2}{(1+sinA+cosA)^2}→

(1+sinA+cosA)

2

(1+sinA−cosA)

2

Expand the fractions using .

\sf \to \dfrac{(cos^2-2sincos+sin^2-2cos+2sin+1)}{(cos^2+2sincos+sin^2+2cos+2sin+1)}→

(cos

2

+2sincos+sin

2

+2cos+2sin+1)

(cos

2

−2sincos+sin

2

−2cos+2sin+1)

Rearrange the terms.

\sf \to \dfrac{(cos^2+sin^2-2sincos-2cos+2sin+1)}{(cos^2+sin^2+2sincos+2cos+2sin+1)}→

(cos

2

+sin

2

+2sincos+2cos+2sin+1)

(cos

2

+sin

2

−2sincos−2cos+2sin+1)

We know that cos²A+sin²A=1.

\sf \to \dfrac{1-2sincos-2cos}{2sin+1}→

2sin+1

1−2sincos−2cos

Now here, take -2cos common from the numerator and +2cos common from the denominator.

\sf \to \dfrac{1-2cos(sin+2)}{2sin+1}→

2sin+1

1−2cos(sin+2)

Now, rearrange the terms, add 1 and 1 and take 2 common.

\to\sf\dfrac{1+1+2sin-2cos}{sin+1}→

sin+1

1+1+2sin−2cos

\to\sf\dfrac{2+2sin-2cos}{sin+1}→

sin+1

2+2sin−2cos

Take 2 common.

\to \sf \dfrac{ 2(1+sin) -2cos(sin+1) }{ 2(1+sin) + 2cos(sin +1 ) }→

2(1+sin)+2cos(sin+1)

2(1+sin)−2cos(sin+1)

Take (1+sin) common.

\to \sf \dfrac{ \not{2}\cancel{(1+sin)}(1 - cos) }{\not{2}\cancel{(1+sin )}(1 + cos )}→

2

(1+sin)

(1+cos)

2

(1+sin)

(1−cos)

\to \sf{\red{\dfrac{1-cosA}{1+cosA} }}→

1+cosA

1−cosA

LHS=RHS.

HENCE PROVED!

FUNDAMENTAL TRIGONOMETRIC RATIOS:

\begin{gathered} \begin{gathered}\begin{gathered}\boxed{\substack{\displaystyle \sf sin^2 \theta+cos^2 \theta = 1 \\\\ \displaystyle \sf 1+cot^2 \theta=cosec^2 \theta \\\\ \displaystyle \sf 1+tan^2 \theta=sec^2 \theta}}\end{gathered}\end{gathered}\end{gathered}

sin

2

θ+cos

2

θ=1

1+cot

2

θ=cosec

2

θ

1+tan

2

θ=sec

2

θ

T-RATIOS:

\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3} }{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }& 1 & \sqrt{3} & \rm Not \: De fined \\ \\ \rm cosec A & \rm Not \: De fined & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm Not \: De fined \\ \\ \rm cot A & \rm Not \: De fined & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered}

∠A

sinA

cosA

tanA

cosecA

secA

cotA

0

0

1

0

NotDefined

1

NotDefined

30

2

1

2

3

3

1

2

3

2

3

45

2

1

2

1

1

2

2

1

60

2

3

2

1

3

3

2

2

3

1

90

1

0

NotDefined

1

NotDefined

0

Similar questions